No Arabic abstract
We investigate Bose-Einstein condensates in bubble trap potentials in the presence of a small gravity. In particular, we focus on thin shells and study both contact and dipolar interacting condensates. We first analyze the effects of the anisotropic nature of the dipolar interactions, which already appear in the absence of gravity and are enhanced when the polarization axis of the dipoles and the gravity are slightly misaligned. Then, in the small gravity context, we investigate the dynamics of small oscillations of these thin, shell-shaped condensates triggered either by an instantaneous tilting of the gravity direction or by a sudden change of the gravity strength. This system could be a preliminary stage for realizing a gravity sensor in space laboratories.
We present full three-dimensional numerical calculations of single vortex states in rotating dipolar condensates. We consider a Bose-Einstein condensate of 52Cr atoms with dipole-dipole and s-wave contact interactions confined in an axially symmetric harmonic trap. We obtain the vortex states by numerically solving the Gross-Pitaevskii equation in the rotating frame with no further approximations. We investigate the properties of a single vortex and calculate the critical angular velocity for different values of the s-wave scattering length. We show that, whereas the standard variational approach breaks down in the limit of pure dipolar interactions, exact solutions of the Gross-Pitaevskii equation can be obtained for values of the s-wave scattering length down to zero. The energy barrier for the nucleation of a vortex is calculated as a function of the vortex displacement from the rotation axis for different values of the angular velocity of the rotating trap.
Inspired by investigations of Bose-Einstein condensates (BECs) produced in the Cold Atom Laboratory (CAL) aboard the International Space Station, we present a study of thermodynamic properties of shell-shaped BECs. Within the context of a spherically symmetric `bubble trap potential, we study the evolution of the system from small filled spheres to hollow, large, thin shells via the tuning of trap parameters. We analyze the bubble trap spectrum and states, and track the distinct changes in spectra between radial and angular modes across the evolution. This separation of the excitation spectrum provides a basis for quantifying dimensional cross-over to quasi-2D physics at a given temperature. Using the spectral data, for a range of trap parameters, we compute the critical temperature for a fixed number of particles to form a BEC. For a set of initial temperatures, we also evaluate the change in temperature that would occur in adiabatic expansion from small filled sphere to large thin shell were the trap to be dynamically tuned. We show that the system cools during this expansion but that the decrease in critical temperature occurs more rapidly, thus resulting in depletion of any initial condensate. We contrast our spectral methods with standard semiclassical treatments, which we find must be used with caution in the thin-shell limit. With regards to interactions, using energetic considerations and corroborated through Bogoliubov treatments, we demonstrate that they would be less important for thin shells due to reduced density but vortex physics would become more predominant. Finally, we apply our treatments to traps that realistically model CAL experiments and borrow from the thermodynamic insights found in the idealized bubble case during adiabatic expansion.
We have computed phase diagrams for rotating spin-1 Bose-Einstein condensates with long-range magnetic dipole-dipole interactions. Spin textures including vortex sheets, staggered half-quantum- and skyrmion vortex lattices and higher order topological defects have been found. These systems exhibit both superfluidity and magnetic crystalline ordering and they could be realized experimentally by imparting angular momentum in the condensate.
Shell-shaped hollow Bose-Einstein condensates (BECs) exhibit behavior distinct from their filled counterparts and have recently attracted attention due to their potential realization in microgravity settings. Here we study distinct features of these hollow structures stemming from vortex physics and the presence of rotation. We focus on a vortex-antivortex pair as the simplest configuration allowed by the constraints on superfluid flow imposed by the closed-surface topology. In the two-dimensional limit of an infinitesimally thin shell BEC, we characterize the long-range attraction between the vortex-antivortex pair and find the critical rotation speed that stabilizes the pair against energetically relaxing towards self-annihilation. In the three-dimensional case, we contrast the bounds on vortex stability with those in the two-dimensional limit and the filled sphere BEC, and evaluate the critical rotation speed as a function of shell thickness. We thus demonstrate that analyzing vortex stabilization provides a nondestructive means of characterizing a hollow sphere BEC and distinguishing it from its filled counterpart.
We study the family of static and moving dark solitons in quasi-one-dimensional dipolar Bose-Einstein condensates, exploring their modified form and interactions. The density dip of the soliton acts as a giant anti-dipole which adds a non-local contribution to the conventional local soliton-soliton interaction. We map out the stability diagram as a function of the strength and polarization direction of the atomic dipoles, identifying both roton and phonon instabilities. Away from these instabilities, the solitons collide elastically. Varying the polarization direction relative to the condensate axis enables tuning of this non-local interaction between repulsive and attractive; the latter case supports unusual dark soliton bound states. Remarkably, these bound states are themselves shown to behave like solitons, emerging unscathed from collisions with each other.