Quantifying the impact of inverter-based distributed generation (DG) sources on power-flow distribution system cases is arduous. Existing distribution system tools predominately model distributed generation sources as either negative PQ loads or as a PV generator and then employed a PV-PQ switching algorithm to mimic Volt/VAR support. These models neglect the unique characteristics of inverter-based distributed generation sources, have scalability and convergence issues, and are ill-suited for increasing solar penetration scenarios. This work proposes an inverter-based DG model accounting for the inverters topology, sensing position, and control strategies. The model extends recently introduced analytical positive sequence generator models for three-phase studies. The use of circuit-simulation based heuristics help achieve robust convergence. Simulation of the PG&E prototypical feeders using a prototype solver demonstrate the models accuracy and efficacy.