No Arabic abstract
The realization of a quantum network node of matter-based qubits compatible with telecom-band operation and large-scale quantum information processing is an outstanding challenge that has limited the potential of elementary quantum networks. We propose a platform for interfacing quantum processors comprising neutral atom arrays with telecom-band photons in a multiplexed network architecture. The use of a large atom array instead of a single atom mitigates the deleterious effects of two-way communication and improves the entanglement rate between two nodes by nearly two orders of magnitude. Further, this system simultaneously provides the ability to perform high-fidelity deterministic gates and readout within each node, opening the door to quantum repeater and purification protocols to enhance the length and fidelity of the network, respectively. Using intermediate nodes as quantum repeaters, we demonstrate the feasibility of entanglement distribution over approximately 1500 km based on realistic assumptions, providing a blueprint for a transcontinental network. Finally, we demonstrate that our platform can distribute approximately 25 Bell pairs over metropolitan distances, which could serve as the backbone of a distributed fault-tolerant quantum computer.
Heralded single photon source (HSPS) is an important way in generating genuine single photon, having advantages of experimental simplicity and versatility. However, HSPS intrinsically suffers from the trade-off between the heralded single photon rate and the single photon purity. To overcome this, one can apply multiplexing technology in different degrees of freedom to enhance the performance of HSPS. Here, by employing spectral multiplexing and active feed-forward spectral manipulating, we demonstrate a HSPS at 1.5 {mu}m telecom-band. Our experimental results show that the spectral multiplexing effectively erases the frequency correlation of pair source and significantly improves the heralded single photon rate while keeping the g{^(^2^)}(0) as low as 0.0006{pm}0.0001. The Hong-Ou-Mandel interference between the heralded single photons and photons from an independent weak coherent source indicates a high indistinguishability. Our results pave a way for scalable HSPS by spectral multiplexing towards deterministic single photon emission.
The realization of an efficient quantum optical interface for multi-qubit systems is an outstanding challenge in science and engineering. We demonstrate a method for interfacing neutral atom arrays with optical photons. In our approach, atomic qubits trapped in individually controlled optical tweezers are moved in and out of the near-field of a nanofabricated photonic crystal cavity. With this platform, we demonstrate full quantum control, efficient quantum non-destructive readout, and entanglement of atom pairs strongly coupled to the cavity. By encoding the qubits into long-lived states and employing dynamical decoupling, the entangled state is verified in free space after being transported away from the cavity. The combination of a compact, integrated optical link and entanglement transport paves the way for quantum networking with neutral atom quantum processors.
Photon-based quantum information processing promises new technologies including optical quantum computing, quantum cryptography, and distributed quantum networks. Polarization-encoded photons at telecommunication wavelengths provide a compelling platform for practical realization of these technologies. However, despite important success towards building elementary components compatible with this platform, including sources of entangled photons, efficient single photon detectors, and on-chip quantum circuits, a missing element has been atomic quantum memory that directly allows for reversible mapping of quantum states encoded in the polarization degree of a telecom-wavelength photon. Here we demonstrate the quantum storage and retrieval of polarization states of heralded single-photons at telecom-wavelength by implementing the atomic frequency comb protocol in an ensemble of erbium atoms doped into an optical fiber. Despite remaining limitations in our proof-of-principle demonstration such as small storage efficiency and storage time, our broadband light-matter interface reveals the potential for use in future quantum information processing.
Sorting atoms stochastically loaded in optical tweezer arrays via an auxiliary mobile tweezer is an efficient approach to preparing intermediate-scale defect-free atom arrays in arbitrary geometries. However, high filling fraction of atom-by-atom assemblers is impeded by redundant sorting moves with imperfect atom transport, especially for scaling the system size to larger atom numbers. Here, we propose a new sorting algorithm (heuristic cluster algorithm, HCA) which provides near-fewest moves in our tailored atom assembler scheme and experimentally demonstrate a $5times6$ defect-free atom array with 98.4(7)$%$ filling fraction for one rearrangement cycle. The feature of HCA that the number of moves $N_{m}approx N$ ($N$ is the number of defect sites to be filled) makes the filling fraction uniform as the size of atom assembler enlarged. Our method is essential to scale hundreds of assembled atoms for bottom-up quantum computation, quantum simulation and precision measurement.
We propose a nanophotonic platform for topological quantum optics. Our system is composed of a two-dimensional lattice of non-linear quantum emitters with optical transitions embedded in a photonic crystal slab. The emitters interact through the guided modes of the photonic crystal, and a uniform magnetic field gives rise to large topological band gaps and an almost completely flat topological band. Topological edge states arise on the boundaries of the system that are protected by the large gap against missing lattice sites and to the inhomogeneous broadening of emitters. These results pave the way for exploring topological many-body states in quantum optical systems.