Do you want to publish a course? Click here

Sample-dependent Dirac point gap in MnBi$_2$Te$_4$ and its response to the applied surface charge: a combined photoemission and ab initio study

477   0   0.0 ( 0 )
 Added by Ilya Klimovskikh
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently discovered intrinsic antiferromagnetic topological insulator MnBi$_2$Te$_4$ presents an exciting platform for realization of the quantum anomalous Hall effect and a number of related phenomena at elevated temperatures. An important characteristic making this material attractive for applications is its predicted large magnetic gap at the Dirac point (DP). However, while the early experimental measurements reported on large DP gaps, a number of recent studies claimed to observe a gapless dispersion of the MnBi$_2$Te$_4$ Dirac cone. Here, using micro($mu$)-laser angle-resolved photoemission spectroscopy, we study the electronic structure of 15 different MnBi$_2$Te$_4$ samples, grown by two different chemists groups. Based on the careful energy distribution curves analysis, the DP gaps between 15 and 65 meV are observed, as measured below the Neel temperature at about 10-16 K. At that, roughly half of the studied samples show the DP gap of about 30 meV, while for a quarter of the samples the gaps are in the 50 to 60 meV range. Summarizing the results of both our and other groups, in the currently available MnBi$_2$Te$_4$ samples the DP gap can acquire an arbitrary value between a few and several tens of meV. Further, based on the density functional theory, we discuss a possible factor that might contribute to the reduction of the DP gap size, which is the excess surface charge that can appear due to various defects in surface region. We demonstrate that the DP gap is influenced by the applied surface charge and even can be closed, which can be taken advantage of to tune the MnBi$_2$Te$_4$ DP gap size.



rate research

Read More

The Dirac point gap at the surface of the antiferromagnetic topological insulator MnBi$_2$Te$_4$ is a highly debated issue. While the early photoemission measurements reported on large gaps in agreement with theoretical predictions, other experiments found vanishingly small splitting of the MnBi$_2$Te$_4$ Dirac cone. Here, we study the crystalline and electronic structure of MnBi$_2$Te$_4$(0001) using scanning tunneling microscopy/spectroscopy (STM/S), micro($mu$)-laser angle resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) calculations. Our topographic STM images clearly reveal features corresponding to point defects in the surface Te and subsurface Bi layers that we identify with the aid of STM simulations as Bi$_text{Te}$ antisites (Bi atoms at the Te sites) and Mn$_text{Bi}$ substitutions (Mn atoms at the Bi sites), respectively. X-ray diffraction (XRD) experiments further evidence the presence of cation (Mn-Bi) intermixing. Altogether, this affects the distribution of the Mn atoms, which, inevitably, leads to a deviation of the MnBi$_2$Te$_4$ magnetic structure from that predicted for the ideal crystal structure. Our transport measurements suggest that the degree of this deviation varies from sample to sample. Consistently, the ARPES/STS experiments reveal that the Dirac point gap of the topological surface state is different for different samples/sample cleavages. Our DFT surface electronic structure calculations show that, due to the predominant localization of the topological surface state near the Bi layers, Mn$_text{Bi}$ defects can cause a strong reduction of the MnBi$_2$Te$_4$ Dirac point gap, given the recently proved antiparallel alignment of the Mn$_text{Bi}$ moments with respect to those of the Mn layer. Our results provide a key to puzzle out the MnBi$_2$Te$_4$ Dirac point gap mystery.
Modification of the gap at the Dirac point (DP) in antiferromagnetic (AFM) axion topological insulator MnBi$_2$Te$_4$ and its electronic and spin structure has been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser excitation with variation of temperature (9-35~K), light polarization and photon energy. We have distinguished both a large (62-67~meV) and a reduced (15-18~meV) gap at the DP in the ARPES dispersions, which remains open above the Neel temperature ($T_mathrm{N}=24.5$~K). We propose that the gap above $T_mathrm{N}$ remains open due to short-range magnetic field generated by chiral spin fluctuations. Spin-resolved ARPES, XMCD and circular dichroism ARPES measurements show a surface ferromagnetic ordering for large-gap sample and significantly reduced effective magnetic moment for the reduced-gap sample. These effects can be associated with a shift of the topological DC state towards the second Mn layer due to structural defects and mechanical disturbance, where it is influenced by a compensated effect of opposite magnetic moments.
Topological surface states with intrinsic magnetic ordering in the MnBi$_2$Te$_4$(Bi$_2$Te$_3$)$_n$ compounds have been predicted to host rich topological phenomena including quantized anomalous Hall effect and axion insulator state. Here we use scanning tunneling microscopy to image the surface Dirac fermions in MnBi$_2$Te$_4$ and MnBi$_4$Te$_7$. We have determined the energy dispersion and helical spin texture of the surface states through quasiparticle interference patterns far above Dirac energy, which confirms its topological nature. Approaching the Dirac point, the native defects in the MnBi$_2$Te$_4$ septuple layer give rise to resonance states which extend spatially and potentially hinder the detection of a mass gap in the spectra. Our results demonstrate that regulating defects is essential to realize exotic topological states at higher temperatures in these compounds.
156 - D. Nevola , H. X. Li , J.-Q. Yan 2020
Surface magnetism and its correlation with the electronic structure are critical to understand the gapless topological surface state in the intrinsic magnetic topological insulator MnBi$_2$Te$_4$. Here, using static and time resolved angle-resolved photoemission spectroscopy (ARPES), we find a significant ARPES intensity change together with a gap opening on a Rashba-like conduction band. Comparison with a model simulation strongly indicates that the surface magnetism on cleaved MnBi$_2$Te$_4$ is the same as its bulk state. The coexistence of surface ferromagnetism and a gapless TSS uncovers the novel complexity of MnBi$_2$Te$_4$ that may be responsible for the low quantum anomalous Hall temperature of exfoliated MnBi$_2$Te$_4$.
87 - Yong Hu , Lixuan Xu , Mengzhu Shi 2019
In the newly discovered magnetic topological insulator MnBi$_2$Te$_4$, both axion insulator state and quantized anomalous Hall effect (QAHE) have been observed by tuning the magnetic structure. The related (MnBi$_2$Te$_4$)$_m$(Bi$_2$Te$_3$)$_n$ heterostructures with increased tuning knobs, are predicted to be a more versatile platform for exotic topological states. Here, we report angle-resolved photoemission spectroscopy (ARPES) studies on a series of the heterostructures (MnBi$_2$Te$_4$, MnBi$_4$Te$_7$ and MnBi$_6$Te$_{10}$). A universal gapless Dirac cone is observed at the MnBi$_2$Te$_4$ terminated (0001) surfaces in all systems. This is in sharp contrast to the expected gap from the original antiferromagnetic ground state, indicating an altered magnetic structure near the surface, possibly due to the surface termination. In the meantime, the electron band dispersion of the surface states, presumably dominated by the top surface, is found to be sensitive to different stackings of the underlying MnBi$_2$Te$_4$ and Bi$_2$Te$_3$ layers. Our results suggest the high tunability of both magnetic and electronic structures of the topological surface states in (MnBi$_2$Te$_4$)$_m$(Bi$_2$Te$_3$)$_n$ heterostructures, which is essential in realizing various novel topological states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا