Classical KMS Functionals and Phase Transitions in Poisson Geometry


Abstract in English

In this paper we study the convex cone of not necessarily smooth measures satisfying the classical KMS condition within the context of Poisson geometry. We discuss the general properties of KMS measures and its relation with the underlying Poisson geometry in analogy to Weinsteins seminal work in the smooth case. Moreover, by generalizing results from the symplectic case, we focus on the case of $b$-Poisson manifolds, where we provide a complete characterization of the convex cone of KMS measures.

Download