JPGNet: Joint Predictive Filtering and Generative Network for Image Inpainting


Abstract in English

Image inpainting aims to restore the missing regions and make the recovery results identical to the originally complete image, which is different from the common generative task emphasizing the naturalness of generated images. Nevertheless, existing works usually regard it as a pure generation problem and employ cutting-edge generative techniques to address it. The generative networks fill the main missing parts with realistic contents but usually distort the local structures. In this paper, we formulate image inpainting as a mix of two problems, i.e., predictive filtering and deep generation. Predictive filtering is good at preserving local structures and removing artifacts but falls short to complete the large missing regions. The deep generative network can fill the numerous missing pixels based on the understanding of the whole scene but hardly restores the details identical to the original ones. To make use of their respective advantages, we propose the joint predictive filtering and generative network (JPGNet) that contains three branches: predictive filtering & uncertainty network (PFUNet), deep generative network, and uncertainty-aware fusion network (UAFNet). The PFUNet can adaptively predict pixel-wise kernels for filtering-based inpainting according to the input image and output an uncertainty map. This map indicates the pixels should be processed by filtering or generative networks, which is further fed to the UAFNet for a smart combination between filtering and generative results. Note that, our method as a novel framework for the image inpainting problem can benefit any existing generation-based methods. We validate our method on three public datasets, i.e., Dunhuang, Places2, and CelebA, and demonstrate that our method can enhance three state-of-the-art generative methods (i.e., StructFlow, EdgeConnect, and RFRNet) significantly with the slightly extra time cost.

Download