Do you want to publish a course? Click here

Constraints on Weak Supernova Kicks from Observed Pulsar Velocities

93   0   0.0 ( 0 )
 Added by Reinhold Willcox
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of binary pulsars and pulsars in globular clusters suggest that at least some pulsars must receive weak natal kicks at birth. If all pulsars received strong natal kicks above unit[50]{kms}, those born in globular clusters would predominantly escape, while wide binaries would be disrupted. On the other hand, observations of transverse velocities of isolated radio pulsars indicate that only $5pm2%$ have velocities below unit[50]{kms}. We explore this apparent tension with rapid binary population synthesis modelling. We propose a model in which supernovae with characteristically low natal kicks (e.g., electron-capture supernovae) only occur if the progenitor star has been stripped via binary interaction with a companion. We show that this model naturally reproduces the observed pulsar speed distribution and without reducing the predicted merging double neutron star yield. We estimate that the zero-age main sequence mass range for non-interacting progenitors of electron-capture supernovae should be no wider than ${approx}0.2 M_odot$.



rate research

Read More

145 - J. Nordhaus 2010
The collapse of a massive stars core, followed by a neutrino-driven, asymmetric supernova explosion, can naturally lead to pulsar recoils and neutron star kicks. Here, we present a two-dimensional, radiation-hydrodynamic simulation in which core collapse leads to significant acceleration of a fully-formed, nascent neutron star (NS) via an induced, neutrino-driven explosion. During the explosion, a ~10% anisotropy in the low-mass, high-velocity ejecta lead to recoil of the high-mass neutron star. At the end of our simulation, the NS has achieved a velocity of ~150 km s$^{-1}$ and is accelerating at ~350 km s$^{-2}$, but has yet to reach the ballistic regime. The recoil is due almost entirely to hydrodynamical processes, with anisotropic neutrino emission contributing less than 2% to the overall kick magnitude. Since the observed distribution of neutron star kick velocities peaks at ~300-400 km s$^{-1}$, recoil due to anisotropic core-collapse supernovae provides a natural, non-exotic mechanism with which to obtain neutron star kicks.
116 - H.-Th. Janka 2004
Two- and three-dimensional simulations demonstrate that hydrodynamic instabilities can lead to low-mode (l=1,2) asymmetries of the fluid flow in the neutrino-heated layer behind the supernova shock. This provides a natural explanation for aspherical mass ejection and for pulsar recoil velocities even in excess of 1000 km/s. We propose that the bimodality of the pulsar velocity distribution might be a consequence of a dominant l=1 mode in case of the fast component, while higher-mode anisotropy characterizes the postshock flow and SN ejecta during the birth of the slow neutron stars. We argue that the observed large asymmetries of supernovae and the measured high velocities of young pulsars therefore do not imply rapid rotation of the iron core of the progenitor star, nor do they require strong magnetic fields to play a crucial role in the explosion. Anisotropic neutrino emission from accretion contributes to the neutron star acceleration on a minor level, and pulsar kicks do not make a good case for non-standard neutrino physics in the nascent neutron star.
108 - Chad T. Kishimoto 2011
Observations of radio pulsars have revealed that they have large velocities which may be greater than 1000 km/s. In this work, the efficacy of an active-sterile neutrino transformation mechanism to provide these large pulsar kicks is investigated. A phase-space based approach is adopted to follow the the transformation of active neutrinos to sterile neutrinos through an MSW-like resonance in the protoneutron star to refine an estimate to the magnitude of the pulsar kick that can be generated in such an event. The result is that this mechanism can create the large pulsar kicks that are observed while not overcooling the star.
110 - Joanna M. Rankin 2015
Two entwined problems have remained unresolved since pulsars were discovered nearly 50 years ago: the orientation of their polarized emission relative to the emitting magnetic field and the direction of putative supernova ``kicks relative to their rotation axes. The rotational orientation of most pulsars can be inferred only from the (``fiducial) polarization angle of their radiation, when their beam points directly at the Earth and the emitting polar fluxtube field is $parallel$ to the rotation axis. Earlier studies have been unrevealing owing to the admixture of different types of radiation (core and conal, two polarization modes), producing both $parallel$ or $perp$ alignments. In this paper we analyze the some 50 pulsars having three characteristics: core radiation beams, reliable absolute polarimetry, and accurate proper motions. The ``fiducial polarization angle of the core emission, we then find, is usually oriented $perp$ to the proper-motion direction on the sky. As the primary core emission is polarized $perp$ to the projected magnetic field in Vela and other pulsars where X-ray imaging reveals the orientation, this shows that the proper motions usually lie $parallel$ to the rotation axes on the sky. Two key physical consequences then follow: first, to the extent that supernova ``kicks are responsible for pulsar proper motions, they are mostly $parallel$ to the rotation axis; and second that most pulsar radiation is heavily processed by the magnetospheric plasma such that the lowest altitude ``parent core emission is polarized $perp$ to the emitting field, propagating as the extraordinary (X) mode.
We show that Majoron emission from a hot nascent neutron star can be anisotropic in the presence of a strong magnetic field. If Majorons carry a non-negligible fraction of the supernova energy, the resulting recoil velocity of a neutron star can explain the observed velocities of pulsars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا