Do you want to publish a course? Click here

The Simons Observatory: HoloSim-ML: machine learning applied to the efficient analysis of radio holography measurements of complex optical systems

67   0   0.0 ( 0 )
 Added by Grace Chesmore
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Near-field radio holography is a common method for measuring and aligning mirror surfaces for millimeter and sub-millimeter telescopes. In instruments with more than a single mirror, degeneracies arise in the holography measurement, requiring multiple measurements and new fitting methods. We present HoloSim-ML, a Python code for beam simulation and analysis of radio holography data from complex optical systems. This code uses machine learning to efficiently determine the position of hundreds of mirror adjusters on multiple mirrors with few micron accuracy. We apply this approach to the example of the Simons Observatory 6m telescope.



rate research

Read More

The Simons Observatory (SO) will perform ground-based observations of the cosmic microwave background (CMB) with several small and large aperture telescopes, each outfitted with thousands to tens of thousands of superconducting aluminum manganese (AlMn) transition-edge sensor bolometers (TESs). In-situ characterization of TES responsivities and effective time constants will be required multiple times each observing-day for calibrating time-streams during CMB map-making. Effective time constants are typically estimated in the field by briefly applying small amplitude square-waves on top of the TES DC biases, and fitting exponential decays in the bolometer response. These so-called bias step measurements can be rapidly implemented across entire arrays and therefore are attractive because they take up little observing time. However, individual detector complex impedance measurements, while too slow to implement during observations, can provide a fuller picture of the TES model and a better understanding of its temporal response. Here, we present the results of dark TES characterization of many prototype SO bolometers and compare the effective thermal time constants measured via bias steps to those derived from complex impedance data.
The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field $sim$70,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities. The SO Universal Focal Plane Modules (UFMs) each contain a 150 mm diameter TES detector array, horn or lenslet optical coupling, cold readout components, and magnetic shielding. SO will use a microwave SQUID multiplexing ($mu$MUX) readout at an initial multiplexing factor of $sim$1000; the cold (100 mK) readout components are packaged in a $mu$MUX readout module, which is part of the UFM, and can also be characterized independently. The 100 mK stage TES bolometer arrays and microwave SQUIDs are sensitive to magnetic fields, and their measured response will vary with the degree to which they are magnetically shielded. We present measurements of the magnetic pickup of test microwave SQUID multiplexers as a study of various shielding configurations for the Simons Observatory. We discuss how these measurements motivated the material choice and design of the UFM magnetic shielding.
We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope; allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics which are now being built. We describe non-sequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far field beam patterns which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction.
89 - S. R. Dicker 2018
The Simons Observatory will consist of a single large (6 m diameter) telescope and a number of smaller (0.5 m diameter) refracting telescopes designed to measure the polarization of the Cosmic Microwave Background to unprecedented accuracy. The large aperture telescope is the same design as the CCAT-prime telescope, a modified Crossed Dragone design with a field-of-view of over 7.8 degrees diameter at 90 GHz. This paper presents an overview of the cold reimaging optics for this telescope and what drove our choice of 350-400 mm diameter silicon lenses in a 2.4 m cryostat over other possibilities. We will also consider the future expandability of this design to CMB Stage-4 and beyond.
The Simons Observatory (SO) will make precise temperature and polarization measurements of the cosmic microwave background (CMB) using a set of telescopes which will cover angular scales between 1 arcminute and tens of degrees, contain over 60,000 detectors, and observe at frequencies between 27 and 270 GHz. SO will consist of a 6 m aperture telescope coupled to over 30,000 transition-edge sensor bolometers along with three 42 cm aperture refractive telescopes, coupled to an additional 30,000+ detectors, all of which will be located in the Atacama Desert at an altitude of 5190 m. The powerful combination of large and small apertures in a CMB observatory will allow us to sample a wide range of angular scales over a common survey area. SO will measure fundamental cosmological parameters of our universe, constrain primordial fluctuations, find high redshift clusters via the Sunyaev-Zel`dovich effect, constrain properties of neutrinos, and trace the density and velocity of the matter in the universe over cosmic time. The complex set of technical and science requirements for this experiment has led to innovative instrumentation solutions which we will discuss. The large aperture telescope will couple to a cryogenic receiver that is 2.4 m in diameter and nearly 3 m long, creating a number of technical challenges. Concurrently, we are designing the array of cryogenic receivers housing the 42 cm aperture telescopes. We will discuss the sensor technology SO will use and we will give an overview of the drivers for and designs of the SO telescopes and receivers, with their cold optical components and detector arrays.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا