It is counter-intuitive that multi-modality methods based on point cloud and images perform only marginally better or sometimes worse than approaches that solely use point cloud. This paper investigates the reason behind this phenomenon. Due to the fact that multi-modality data augmentation must maintain consistency between point cloud and images, recent methods in this field typically use relatively insufficient data augmentation. This shortage makes their performance under expectation. Therefore, we contribute a pipeline, named transformation flow, to bridge the gap between single and multi-modality data augmentation with transformation reversing and replaying. In addition, considering occlusions, a point in different modalities may be occupied by different objects, making augmentations such as cut and paste non-trivial for multi-modality detection. We further present Multi-mOdality Cut and pAste (MoCa), which simultaneously considers occlusion and physical plausibility to maintain the multi-modality consistency. Without using ensemble of detectors, our multi-modality detector achieves new state-of-the-art performance on nuScenes dataset and competitive performance on KITTI 3D benchmark. Our method also wins the best PKL award in the 3rd nuScenes detection challenge. Code and models will be released at https://github.com/open-mmlab/mmdetection3d.
3D multi-object tracking is an important component in robotic perception systems such as self-driving vehicles. Recent work follows a tracking-by-detection pipeline, which aims to match past tracklets with detections in the current frame. To avoid matching with false positive detections, prior work filters out detections with low confidence scores via a threshold. However, finding a proper threshold is non-trivial, which requires extensive manual search via ablation study. Also, this threshold is sensitive to many factors such as target object category so we need to re-search the threshold if these factors change. To ease this process, we propose to automatically select high-quality detections and remove the efforts needed for manual threshold search. Also, prior work often uses a single threshold per data sequence, which is sub-optimal in particular frames or for certain objects. Instead, we dynamically search threshold per frame or per object to further boost performance. Through experiments on KITTI and nuScenes, our method can filter out $45.7%$ false positives while maintaining the recall, achieving new S.O.T.A. performance and removing the need for manually threshold tuning.
To reduce annotation labor associated with object detection, an increasing number of studies focus on transferring the learned knowledge from a labeled source domain to another unlabeled target domain. However, existing methods assume that the labeled data are sampled from a single source domain, which ignores a more generalized scenario, where labeled data are from multiple source domains. For the more challenging task, we propose a unified Faster R-CNN based framework, termed Divide-and-Merge Spindle Network (DMSN), which can simultaneously enhance domain invariance and preserve discriminative power. Specifically, the framework contains multiple source subnets and a pseudo target subnet. First, we propose a hierarchical feature alignment strategy to conduct strong and weak alignments for low- and high-level features, respectively, considering their different effects for object detection. Second, we develop a novel pseudo subnet learning algorithm to approximate optimal parameters of pseudo target subset by weighted combination of parameters in different source subnets. Finally, a consistency regularization for region proposal network is proposed to facilitate each subnet to learn more abstract invariances. Extensive experiments on different adaptation scenarios demonstrate the effectiveness of the proposed model.
We propose 3DETR, an end-to-end Transformer based object detection model for 3D point clouds. Compared to existing detection methods that employ a number of 3D-specific inductive biases, 3DETR requires minimal modifications to the vanilla Transformer block. Specifically, we find that a standard Transformer with non-parametric queries and Fourier positional embeddings is competitive with specialized architectures that employ libraries of 3D-specific operators with hand-tuned hyperparameters. Nevertheless, 3DETR is conceptually simple and easy to implement, enabling further improvements by incorporating 3D domain knowledge. Through extensive experiments, we show 3DETR outperforms the well-established and highly optimized VoteNet baselines on the challenging ScanNetV2 dataset by 9.5%. Furthermore, we show 3DETR is applicable to 3D tasks beyond detection, and can serve as a building block for future research.
Detecting dynamic objects and predicting static road information such as drivable areas and ground heights are crucial for safe autonomous driving. Previous works studied each perception task separately, and lacked a collective quantitative analysis. In this work, we show that it is possible to perform all perception tasks via a simple and efficient multi-task network. Our proposed network, LidarMTL, takes raw LiDAR point cloud as inputs, and predicts six perception outputs for 3D object detection and road understanding. The network is based on an encoder-decoder architecture with 3D sparse convolution and deconvolution operations. Extensive experiments verify the proposed method with competitive accuracies compared to state-of-the-art object detectors and other task-specific networks. LidarMTL is also leveraged for online localization. Code and pre-trained model have been made available at https://github.com/frankfengdi/LidarMTL.