Do you want to publish a course? Click here

Knowledge Transfer by Discriminative Pre-training for Academic Performance Prediction

222   0   0.0 ( 0 )
 Added by Byungsoo Kim
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The needs for precisely estimating a students academic performance have been emphasized with an increasing amount of attention paid to Intelligent Tutoring System (ITS). However, since labels for academic performance, such as test scores, are collected from outside of ITS, obtaining the labels is costly, leading to label-scarcity problem which brings challenge in taking machine learning approaches for academic performance prediction. To this end, inspired by the recent advancement of pre-training method in natural language processing community, we propose DPA, a transfer learning framework with Discriminative Pre-training tasks for Academic performance prediction. DPA pre-trains two models, a generator and a discriminator, and fine-tunes the discriminator on academic performance prediction. In DPAs pre-training phase, a sequence of interactions where some tokens are masked is provided to the generator which is trained to reconstruct the original sequence. Then, the discriminator takes an interaction sequence where the masked tokens are replaced by the generators outputs, and is trained to predict the originalities of all tokens in the sequence. Compared to the previous state-of-the-art generative pre-training method, DPA is more sample efficient, leading to fast convergence to lower academic performance prediction error. We conduct extensive experimental studies on a real-world dataset obtained from a multi-platform ITS application and show that DPA outperforms the previous state-of-the-art generative pre-training method with a reduction of 4.05% in mean absolute error and more robust to increased label-scarcity.



rate research

Read More

96 - Bin He , Xin Jiang , Jinghui Xiao 2020
Recent studies on pre-trained language models have demonstrated their ability to capture factual knowledge and applications in knowledge-aware downstream tasks. In this work, we present a language model pre-training framework guided by factual knowledge completion and verification, and use the generative and discriminative approaches cooperatively to learn the model. Particularly, we investigate two learning schemes, named two-tower scheme and pipeline scheme, in training the generator and discriminator with shared parameter. Experimental results on LAMA, a set of zero-shot cloze-style question answering tasks, show that our model contains richer factual knowledge than the conventional pre-trained language models. Furthermore, when fine-tuned and evaluated on the MRQA shared tasks which consists of several machine reading comprehension datasets, our model achieves the state-of-the-art performance, and gains large improvements on NewsQA (+1.26 F1) and TriviaQA (+1.56 F1) over RoBERTa.
While recent research on natural language inference has considerably benefited from large annotated datasets, the amount of inference-related knowledge (including commonsense) provided in the annotated data is still rather limited. There have been two lines of approaches that can be used to further address the limitation: (1) unsupervised pretraining can leverage knowledge in much larger unstructured text data; (2) structured (often human-curated) knowledge has started to be considered in neural-network-based models for NLI. An immediate question is whether these two approaches complement each other, or how to develop models that can bring together their advantages. In this paper, we propose models that leverage structured knowledge in different components of pre-trained models. Our results show that the proposed models perform better than previous BERT-based state-of-the-art models. Although our models are proposed for NLI, they can be easily extended to other sentence or sentence-pair classification problems.
294 - Bin He , Di Zhou , Jing Xie 2020
Entities may have complex interactions in a knowledge graph (KG), such as multi-step relationships, which can be viewed as graph contextual information of the entities. Traditional knowledge representation learning (KRL) methods usually treat a single triple as a training unit, and neglect most of the graph contextual information exists in the topological structure of KGs. In this study, we propose a Path-based Pre-training model to learn Knowledge Embeddings, called PPKE, which aims to integrate more graph contextual information between entities into the KRL model. Experiments demonstrate that our model achieves state-of-the-art results on several benchmark datasets for link prediction and relation prediction tasks, indicating that our model provides a feasible way to take advantage of graph contextual information in KGs.
Identifying the factors that influence academic performance is an essential part of educational research. Previous studies have documented the importance of personality traits, class attendance, and social network structure. Because most of these analyses were based on a single behavioral aspect and/or small sample sizes, there is currently no quantification of the interplay of these factors. Here, we study the academic performance among a cohort of 538 undergraduate students forming a single, densely connected social network. Our work is based on data collected using smartphones, which the students used as their primary phones for two years. The availability of multi-channel data from a single population allows us to directly compare the explanatory power of individual and social characteristics. We find that the most informative indicators of performance are based on social ties and that network indicators result in better model performance than individual characteristics (including both personality and class attendance). We confirm earlier findings that class attendance is the most important predictor among individual characteristics. Finally, our results suggest the presence of strong homophily and/or peer effects among university students.
Many researchers have studied student academic performance in supervised and unsupervised learning using numerous data mining techniques. Neural networks often need a greater collection of observations to achieve enough predictive ability. Due to the increase in the rate of poor graduates, it is necessary to design a system that helps to reduce this menace as well as reduce the incidence of students having to repeat due to poor performance or having to drop out of school altogether in the middle of the pursuit of their career. It is therefore necessary to study each one as well as their advantages and disadvantages, so as to determine which is more efficient in and in what case one should be preferred over the other. The study aims to develop a system to predict student performance with Artificial Neutral Network using the student demographic traits so as to assist the university in selecting candidates (students) with a high prediction of success for admission using previous academic records of students granted admissions which will eventually lead to quality graduates of the institution. The model was developed based on certain selected variables as the input. It achieved an accuracy of over 92.3 percent, showing Artificial Neural Network potential effectiveness as a predictive tool and a selection criterion for candidates seeking admission to a university.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا