Single Particle Detection System for Strong-Field QED Experiments


Abstract in English

Measuring signatures of strong-field quantum electrodynamics (SF-QED) processes in an intense laser field is an experimental challenge: it requires detectors to be highly sensitive to single electrons and positrons in the presence of the typically very strong x-ray and $gamma$-photon background levels. In this paper, we describe a particle detector capable of diagnosing single leptons from SF-QED interactions and discuss the background level simulations for the upcoming Experiment-320 at FACET-II (SLAC National Accelerator Laboratory). The single particle detection system described here combines pixelated scintillation LYSO screens and a Cherenkov calorimeter. We detail the performance of the system using simulations and a calibration of the Cherenkov detector at the ELBE accelerator. Single 3 GeV leptons are expected to produce approximately 300 detectable photons in a single calorimeter channel. This signal is compared to Monte-Carlo simulations of the experiment. A signal-to-noise ratio of 32 in a single Cherenkov calorimeter detector is expected and a spectral resolution of 2% is achieved using the pixelated LYSO screens.

Download