Do you want to publish a course? Click here

Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian Nonparametrics

65   0   0.0 ( 0 )
 Added by Ryan Giordano
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Bayesian models based on the Dirichlet process and other stick-breaking priors have been proposed as core ingredients for clustering, topic modeling, and other unsupervised learning tasks. Prior specification is, however, relatively difficult for such models, given that their flexibility implies that the consequences of prior choices are often relatively opaque. Moreover, these choices can have a substantial effect on posterior inferences. Thus, considerations of robustness need to go hand in hand with nonparametric modeling. In the current paper, we tackle this challenge by exploiting the fact that variational Bayesian methods, in addition to having computational advantages in fitting complex nonparametric models, also yield sensitivities with respect to parametric and nonparametric aspects of Bayesian models. In particular, we demonstrate how to assess the sensitivity of conclusions to the choice of concentration parameter and stick-breaking distribution for inferences under Dirichlet process mixtures and related mixture models. We provide both theoretical and empirical support for our variational approach to Bayesian sensitivity analysis.



rate research

Read More

The vast majority of models for the spread of communicable diseases are parametric in nature and involve underlying assumptions about how the disease spreads through a population. In this article we consider the use of Bayesian nonparametric approaches to analysing data from disease outbreaks. Specifically we focus on methods for estimating the infection process in simple models under the assumption that this process has an explicit time-dependence.
We use the theory of normal variance-mean mixtures to derive a data augmentation scheme for models that include gamma functions. Our methodology applies to many situations in statistics and machine learning, including Multinomial-Dirichlet distributions, Negative binomial regression, Poisson-Gamma hierarchical models, Extreme value models, to name but a few. All of those models include a gamma function which does not admit a natural conjugate prior distribution providing a significant challenge to inference and prediction. To provide a data augmentation strategy, we construct and develop the theory of the class of Exponential Reciprocal Gamma distributions. This allows scalable EM and MCMC algorithms to be developed. We illustrate our methodology on a number of examples, including gamma shape inference, negative binomial regression and Dirichlet allocation. Finally, we conclude with directions for future research.
This preprint has been reviewed and recommended by Peer Community In Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100036). Approximate Bayesian computation (ABC) has grown into a standard methodology that manages Bayesian inference for models associated with intractable likelihood functions. Most ABC implementations require the preliminary selection of a vector of informative statistics summarizing raw data. Furthermore, in almost all existing implementations, the tolerance level that separates acceptance from rejection of simulated parameter values needs to be calibrated. We propose to conduct likelihood-free Bayesian inferences about parameters with no prior selection of the relevant components of the summary statistics and bypassing the derivation of the associated tolerance level. The approach relies on the random forest methodology of Breiman (2001) applied in a (non parametric) regression setting. We advocate the derivation of a new random forest for each component of the parameter vector of interest. When compared with earlier ABC solutions, this method offers significant gains in terms of robustness to the choice of the summary statistics, does not depend on any type of tolerance level, and is a good trade-off in term of quality of point estimator precision and credible interval estimations for a given computing time. We illustrate the performance of our methodological proposal and compare it with earlier ABC methods on a Normal toy example and a population genetics example dealing with human population evolution. All methods designed here have been incorporated in the R package abcrf (version 1.7) available on CRAN.
A large number of statistical models are doubly-intractable: the likelihood normalising term, which is a function of the model parameters, is intractable, as well as the marginal likelihood (model evidence). This means that standard inference techniques to sample from the posterior, such as Markov chain Monte Carlo (MCMC), cannot be used. Examples include, but are not confined to, massive Gaussian Markov random fields, autologistic models and Exponential random graph models. A number of approximate schemes based on MCMC techniques, Approximate Bayesian computation (ABC) or analytic approximations to the posterior have been suggested, and these are reviewed here. Exact MCMC schemes, which can be applied to a subset of doubly-intractable distributions, have also been developed and are described in this paper. As yet, no general method exists which can be applied to all classes of models with doubly-intractable posteriors. In addition, taking inspiration from the Physics literature, we study an alternative method based on representing the intractable likelihood as an infinite series. Unbiased estimates of the likelihood can then be obtained by finite time stochastic truncation of the series via Russian Roulette sampling, although the estimates are not necessarily positive. Results from the Quantum Chromodynamics literature are exploited to allow the use of possibly negative estimates in a pseudo-marginal MCMC scheme such that expectations with respect to the posterior distribution are preserved. The methodology is reviewed on well-known examples such as the parameters in Ising models, the posterior for Fisher-Bingham distributions on the $d$-Sphere and a large-scale Gaussian Markov Random Field model describing the Ozone Column data. This leads to a critical assessment of the strengths and weaknesses of the methodology with pointers to ongoing research.
Approximate Bayesian Computation (ABC) methods are used to approximate posterior distributions in models with unknown or computationally intractable likelihoods. Both the accuracy and computational efficiency of ABC depend on the choice of summary statistic, but outside of special cases where the optimal summary statistics are known, it is unclear which guiding principles can be used to construct effective summary statistics. In this paper we explore the possibility of automating the process of constructing summary statistics by training deep neural networks to predict the parameters from artificially generated data: the resulting summary statistics are approximately posterior means of the parameters. With minimal model-specific tuning, our method constructs summary statistics for the Ising model and the moving-average model, which match or exceed theoretically-motivated summary statistics in terms of the accuracies of the resulting posteriors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا