We provide a rigorous analysis of the quantum optimal control problem in the setting of a linear combination $s(t)B+(1-s(t))C$ of two noncommuting Hamiltonians $B$ and $C$. This includes both quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA). The target is to minimize the energy of the final ``problem Hamiltonian $C$, for a time-dependent and bounded control schedule $s(t)in [0,1]$ and $tin mc{I}:= [0,t_f]$. It was recently shown, in a purely closed system setting, that the optimal solution to this problem is a ``bang-anneal-bang schedule, with the bangs characterized by $s(t)= 0$ and $s(t)= 1$ in finite subintervals of $mc{I}$, in particular $s(0)=0$ and $s(t_f)=1$, in contrast to the standard prescription $s(0)=1$ and $s(t_f)=0$ of quantum annealing. Here we extend this result to the open system setting, where the system is described by a density matrix rather than a pure state. This is the natural setting for experimental realizations of QA and QAOA. For finite-dimensional environments and without any approximations we identify sufficient conditions ensuring that either the bang-anneal, anneal-bang, or bang-anneal-bang schedules are optimal, and recover the optimality of $s(0)=0$ and $s(t_f)=1$. However, for infinite-dimensional environments and a system described by an adiabatic Redfield master equation we do not recover the bang-type optimal solution. In fact we can only identify conditions under which $s(t_f)=1$, and even this result is not recovered in the fully Markovian limit. The analysis, which we carry out entirely within the geometric framework of Pontryagin Maximum Principle, simplifies using the density matrix formulation compared to the state vector formulation.