No Arabic abstract
We provide a rigorous analysis of the quantum optimal control problem in the setting of a linear combination $s(t)B+(1-s(t))C$ of two noncommuting Hamiltonians $B$ and $C$. This includes both quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA). The target is to minimize the energy of the final ``problem Hamiltonian $C$, for a time-dependent and bounded control schedule $s(t)in [0,1]$ and $tin mc{I}:= [0,t_f]$. It was recently shown, in a purely closed system setting, that the optimal solution to this problem is a ``bang-anneal-bang schedule, with the bangs characterized by $s(t)= 0$ and $s(t)= 1$ in finite subintervals of $mc{I}$, in particular $s(0)=0$ and $s(t_f)=1$, in contrast to the standard prescription $s(0)=1$ and $s(t_f)=0$ of quantum annealing. Here we extend this result to the open system setting, where the system is described by a density matrix rather than a pure state. This is the natural setting for experimental realizations of QA and QAOA. For finite-dimensional environments and without any approximations we identify sufficient conditions ensuring that either the bang-anneal, anneal-bang, or bang-anneal-bang schedules are optimal, and recover the optimality of $s(0)=0$ and $s(t_f)=1$. However, for infinite-dimensional environments and a system described by an adiabatic Redfield master equation we do not recover the bang-type optimal solution. In fact we can only identify conditions under which $s(t_f)=1$, and even this result is not recovered in the fully Markovian limit. The analysis, which we carry out entirely within the geometric framework of Pontryagin Maximum Principle, simplifies using the density matrix formulation compared to the state vector formulation.
Experimentally achieving the precision that standard quantum metrology schemes promise is always challenging. Recently, additional controls were applied to design feasible quantum metrology schemes. However, these approaches generally does not consider ease of implementation, raising technological barriers impeding its realization. In this paper, we circumvent this problem by applying closed-loop learning control to propose a practical controlled sequential scheme for quantum metrology. Purity loss of the probe state, which relates to quantum Fisher information, is measured efficiently as the fitness to guide the learning loop. We confirm its feasibility and certain superiorities over standard quantum metrology schemes by numerical analysis and proof-of-principle experiments in a nuclear magnetic resonance (NMR) system.
Quantum optimal control can play a crucial role to realize a set of universal quantum logic gates with error rates below the threshold required for fault-tolerance. Open-loop quantum optimal control relies on accurate modeling of the quantum system under control, and does not scale efficiently with system size. These problems can be avoided in closed-loop quantum optimal control, which utilizes feedback from the system to improve control fidelity. In this paper, two gradient-based closed-loop quantum optimal control algorithms, the hybrid quantum-classical approach (HQCA) described in [Phys. Rev. Lett. 118, 150503 (2017)] and the finite-difference (FD) method, are experimentally investigated and compared to the open-loop quantum optimal control utilizing the gradient ascent method. We employ a solid-state ensemble of coupled electron-nuclear spins serving as a two-qubit system. Specific single-qubit and two-qubit state preparation gates are optimized using the closed-loop and open-loop methods. The experimental results demonstrate the implemented closed-loop quantum control outperforms the open-loop control in our system. Furthermore, simulations reveal that HQCA is more robust than the FD method to gradient noise which originates from measurement noise in this experimental setting. On the other hand, the FD method is more robust to control field distortions coming from non-ideal hardware
The ability to engineer high-fidelity gates on quantum processors in the presence of systematic errors remains the primary barrier to achieving quantum advantage. Quantum optimal control methods have proven effective in experimentally realizing high-fidelity gates, but they require exquisite calibration to be performant. We apply robust trajectory optimization techniques to suppress gate errors arising from system parameter uncertainty. We propose a derivative-based approach that maintains computational efficiency by using forward-mode differentiation. Additionally, the effect of depolarization on a gate is typically modeled by integrating the Lindblad master equation, which is computationally expensive. We employ a computationally efficient model and utilize time-optimal control to achieve high-fidelity gates in the presence of depolarization. We apply these techniques to a fluxonium qubit and suppress simulated gate errors due to parameter uncertainty below $10^{-7}$ for static parameter deviations on the order of $1%$.
Quantum systems are promising candidates for sensing of weak signals as they can provide unrivaled performance when estimating parameters of external fields. However, when trying to detect weak signals that are hidden by background noise, the signal-to-noise-ratio is a more relevant metric than raw sensitivity. We identify, under modest assumptions about the statistical properties of the signal and noise, the optimal quantum control to detect an external signal in the presence of background noise using a quantum sensor. Interestingly, for white background noise, the optimal solution is the simple and well-known spin-locking control scheme. We further generalize, using numerical techniques, these results to the background noise being a correlated Lorentzian spectrum. We show that for increasing correlation time, pulse based sequences such as CPMG are also close to the optimal control for detecting the signal, with the crossover dependent on the signal frequency. These results show that an optimal detection scheme can be easily implemented in near-term quantum sensors without the need for complicated pulse shaping.
We have designed, fabricated and operated a scalable system for applying independently programmable time-independent, and limited time-dependent flux biases to control superconducting devices in an integrated circuit. Here we report on the operation of a system designed to supply 64 flux biases to devices in a circuit designed to be a unit cell for a superconducting adiabatic quantum optimization system. The system requires six digital address lines, two power lines, and a handful of global analog lines.