No Arabic abstract
Simultaneously with the transformation in the energy system, the spot and ancillary service markets for electricity have become increasingly flexible with shorter service periods and lower minimum powers. This flexibility has made the fastest form of frequency regulation - the frequency containment reserve (FCR) - particularly attractive for large-scale battery storage systems (BSSs) and led to a market growth of these systems. However, this growth resulted in high competition and consequently falling FCR prices, making the FCR market increasingly unattractive to large-scale BSSs. In the context of multi-use concepts, this market may be interesting especially for a pool of electric vehicles (EVs), which can generate additional revenue during their idle times. In this paper, multi-year measurement data of 22 commercial EVs are used for the development of a simulation model for marketing FCR. In addition, logbooks of more than 460 vehicles of different economic sectors are evaluated. Based on the simulations, the effects of flexibilization on the marketing of a pool of EVs are analyzed for the example of the German FCR market design, which is valid for many countries in Europe. It is shown that depending on the sector, especially the recently made changes of service periods from one week to one day and from one day to four hours generate the largest increase in available pool power. Further reductions in service periods, on the other hand, offer only a small advantage, as the idle times are often longer than the short service periods. In principle, increasing flexibility overcompensates for falling FCR prices and leads to higher revenues, even if this does not apply across all sectors examined. A pool of 1,000 EVs could theoretically generate revenues of about 5,000 EUR - 8,000 EUR per week on the German FCR market in 2020.
Given the rise of electric vehicle (EV) adoption, supported by government policies and dropping technology prices, new challenges arise in the modeling and operation of electric transportation. In this paper, we present a model for solving the EV routing problem while accounting for real-life stochastic demand behavior. We present a mathematical formulation that minimizes travel time and energy costs of an EV fleet. The EV is represented by a battery energy consumption model. To adapt our formulation to real-life scenarios, customer pick-ups and drop-offs were modeled as stochastic parameters. A chance-constrained optimization model is proposed for addressing pick-ups and drop-offs uncertainties. Computational validation of the model is provided based on representative transportation scenarios. Results obtained showed a quick convergence of our model with verifiable solutions. Finally, the impact of electric vehicles charging is validated in Downtown Manhattan, New York by assessing the effect on the distribution grid.
Even with state-of-the-art defense mechanisms, cyberattacks in the electric power distribution sector are commonplace. Particularly alarming are load-altering (demand-side) cyberattacks launched through high-wattage assets, which are not continuously monitored by electric power utilities. Electric Vehicle Charging Stations (EVCSs) are among such high-wattage assets and, therefore, cyber insurance can be an effective mechanism to protect EVCSs from economic losses caused by cyberattacks. This paper presents a data-driven cyber insurance design model for public EVCSs. Under some mildly restrictive assumptions, we derive an optimal cyber insurance premium. Then, we robustify this optimal premium against uncertainty in data and investigate the risk of insuring the EVCSs using Conditional Value-at-Risk. A case study with data from EVCSs in Manhattan, New York illustrates our results.
The increased uptake of electric vehicles (EVs) leads to increased demand for electricity, and sometime pressure to power grids. Uncoordinated charging of EVs may result in putting pressure on distribution networks, and often some form of optimisation is required in the charging process. Optimal coordinated charging is a multi-objective optimisation problem in nature, with objective functions such as minimum price charging and minimum disruptions to the grid. In this manuscript, we propose a general multi-objective EV charging/discharging schedule (MOEVCS) framework, where the time of use (TOU) tariff is designed according to the load request at each time stamp. To obtain the optimal scheduling scheme and balance the competing benefits from different stakeholders, such as EV owners, EV charging stations (EVCS), and the grid operator, we design three conflicting objective functions including EV owner cost, EVCS profit, and the network impact. Moreover, we create four application scenarios with different charging request distributions over the investigated periods. We use a constraint multi-objective evolutionary algorithm (MOEA) to solve the problem. Our results demonstrate the effectiveness of MOEVCS in making a balance between three conflicting objectives.
We pose the aggregators problem as a bilevel model, where the upper level minimizes the total operation costs of the fleet of EVs, while each lower level minimizes the energy available to each vehicle for transportation given a certain charging plan. Thanks to the totally unimodular character of the constraint matrix in the lower-level problems, the model can be mathematically recast as a computationally efficient mixed-integer program that delivers charging schedules that are robust against the uncertain availability of the EVs. Finally, we use synthetic data from the National Household Travel Survey 2017 to analyze the behavior of the EV aggregator from both economic and technical viewpoints and compare it with the results from a deterministic approach.
We describe the architecture and algorithms of the Adaptive Charging Network (ACN), which was first deployed on the Caltech campus in early 2016 and is currently operating at over 100 other sites in the United States. The architecture enables real-time monitoring and control and supports electric vehicle (EV) charging at scale. The ACN adopts a flexible Adaptive Scheduling Algorithm based on convex optimization and model predictive control and allows for significant over-subscription of electrical infrastructure. We describe some of the practical challenges in real-world charging systems, including unbalanced three-phase infrastructure, non-ideal battery charging behavior, and quantized control signals. We demonstrate how the Adaptive Scheduling Algorithm handles these challenges, and compare its performance against baseline algorithms from the deadline scheduling literature using real workloads recorded from the Caltech ACN and accurate system models. We find that in these realistic settings, our scheduling algorithm can improve operator profit by 3.4 times over uncontrolled charging and consistently outperforms baseline algorithms when delivering energy in highly congested systems.