Do you want to publish a course? Click here

Asymmetric Dark Matter May Not Be Light

68   0   0.0 ( 0 )
 Added by Bethany Suter
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is often said that asymmetric dark matter is light compared to typical weakly interacting massive particles. Here we point out a simple scheme with a neutrino portal and $mathcal{O}(60 text{ GeV})$ asymmetric dark matter which may be added to any standard baryogenesis scenario. The dark sector contains a copy of the Standard Model gauge group, as well as (at least) one matter family, Higgs, and right-handed neutrino. After baryogenesis, some lepton asymmetry is transferred to the dark sector through the neutrino portal where dark sphalerons convert it into a dark baryon asymmetry. Dark hadrons form asymmetric dark matter and may be directly detected due to the vector portal. Surprisingly, even dark anti-neutrons may be directly detected if they have a sizeable electric dipole moment. The dark photons visibly decay at current and future experiments which probe complementary parameter space to dark matter direct detection searches. Exotic Higgs decays are excellent signals at future $e^+ e^-$ Higgs factories.



rate research

Read More

Very light dark matter is usually taken to consist of uncharged bosons such as axion-like particles or dark photons. Here, we consider the prospect of very light, possibly even sub-eV dark matter carrying a net charge that is (approximately) conserved. By making use of the Affleck-Dine mechanism for its production, we show that a sizable fraction of the energy density can be stored in the asymmetric component. We furthermore argue that there exist regions of parameter space where the energy density contained in symmetric particle-antiparticle pairs without net charge can to some degree be depleted by considering couplings to additional fields. Finally, we make an initial foray into the phenomenology of this scenario by considering the possibility that dark matter is coupled to the visible sector via the Higgs portal.
We study the effect of a first-order phase transition in a confining $SU(N)$ dark sector with heavy dark quarks. The baryons of this sector are the dark matter candidate. During the confinement phase transition the heavy quarks are trapped inside isolated, contracting pockets of the deconfined phase, giving rise to a second stage of annihilation that dramatically suppresses the dark quark abundance. The surviving abundance is determined by the local accidental asymmetry in each pocket. The correct dark matter abundance is obtained for $mathcal{O}(1-100)$ PeV dark quarks, above the usual unitarity bound.
78 - Yu Hamada , Ryuichiro Kitano , 2021
We propose a scenario that the Electroweak-Skyrmion, a solitonic object made of the Higgs field and the electroweak gauge fields, is identified as an asymmetric dark matter. In this scenario, the relic abundance of the dark matter is related to the baryon asymmetry of the Universe through a sphaleron-like process. We show that the observed ratio of dark matter abundance to the baryon asymmetry can be explained by this scenario with an appropriate choice of model parameters that is allowed by currently available experimental constraints.
We discuss the possibility of producing a light dark photon dark matter through a coupling between the dark photon field and the inflaton. The dark photon with a large wavelength is efficiently produced due to the inflaton motion during inflation and becomes non-relativistic before the time of matter-radiation equality. We compute the amount of production analytically. The correct relic abundance is realized with a dark photon mass extending down to $10^{-21} , rm eV$.
400 - Yuri Shtanov 2021
A new cosmological scenario is proposed in which a light scalaron of $f (R)$ gravity plays the role of dark matter. In this scenario, the scalaron initially resides at the minimum of its effective potential while the electroweak symmetry is unbroken. At the beginning of the electroweak crossover, the evolving expectation value of the Higgs field triggers the evolution of the scalaron due to interaction between these fields. After the electroweak crossover, the oscillating scalaron can represent cold dark matter. Its current energy density depends on a single free parameter, the scalaron mass $m$, and the value $m simeq 4 times 10^{-3}, text{eV}$ is required to explain the observed dark-matter abundance. Larger mass values would be required in scenarios where the scalaron is excited before the electroweak crossover.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا