We determined bulk crystal nucleation rates in aqueous suspensions of charged spheres at low metastability. Experiments were performed in dependence on electrolyte concen-tration and for two different particle number densities. The time-dependent nucleation rate shows a pronounced initial peak, while post-solidification crystal size distributions are skewed towards larger crystallite sizes. At each concentration, the nucleation rate density initially drops exponentially with increasing salt concentration. The complete data set, however, shows an unexpected scaling of the nucleation rate densities with met-astability times the number density of particles. Parameterization of our results in terms of Classical Nucleation Theory reveals unusually low interfacial free energies of the nu-cleus surfaces and nucleation barriers well below the thermal energy. We tentatively attribute our observations to the presence of doublets introduced by the employed con-ditioning technique and acting as nucleation seeds.