Asymptotic theory of hydrodynamic interactions between slender filaments


Abstract in English

Hydrodynamic interactions (HIs) are important in biophysics research because they influence both the collective and the individual behaviour of microorganisms and self-propelled particles. For instance, HIs at the micro-swimmer level determine the attraction or repulsion between individuals, and hence their collective behaviour. Meanwhile, HIs between swimming appendages (e.g. cilia and flagella) influence the emergence of swimming gaits, synchronised bundles and metachronal waves. In this study, we address the issue of HIs between slender filaments separated by a distance larger than their contour length (d>L) by means of asymptotic calculations and numerical simulations. We first derive analytical expressions for the extended resistance matrix of two arbitrarily-shaped rigid filaments as a series expansion in inverse powers of d/L>1. The coefficients in our asymptotic series expansion are then evaluated using two well-established methods for slender filaments, resistive-force theory (RFT) and slender-body theory (SBT), and our asymptotic theory is verified using numerical simulations based on SBT for the case of two parallel helices. The theory captures the qualitative features of the interactions in the regime d/L>1, which opens the path to a deeper physical understanding of hydrodynamically governed phenomena such as inter-filament synchronisation and multiflagellar propulsion. To demonstrate the usefulness of our results, we next apply our theory to the case of two helices rotating side-by-side, where we quantify the dependence of all forces and torques on the distance and phase difference between them. Using our understanding of pairwise HIs, we then provide physical intuition for the case of a circular array of rotating helices. Our theoretical results will be useful for the study of HIs between bacterial flagella, nodal cilia, and slender microswimmers.

Download