The course of an epidemic exhibits average growth dynamics determined by features of the pathogen and the population, yet also features significant variability reflecting the stochastic nature of disease spread. The interplay of biological, social, structural and random factors makes disease forecasting extraordinarily complex. In this work, we reframe a stochastic branching process analysis in terms of probability generating functions and compare it to continuous time epidemic simulations on networks. In doing so, we predict the diversity of emerging epidemic courses on both homogeneous and heterogeneous networks. We show how the challenge of inferring the early course of an epidemic falls on the randomness of disease spread more so than on the heterogeneity of contact patterns. We provide an analysis which helps quantify, in real time, the probability that an epidemic goes supercritical or conversely, dies stochastically. These probabilities are often assumed to be one and zero, respectively, if the basic reproduction number, or R0, is greater than 1, ignoring the heterogeneity and randomness inherent to disease spread. This framework can give more insight into early epidemic spread by weighting standard deterministic models with likelihood to inform pandemic preparedness with probabilistic forecasts.