On Codomain Separability and Label Inference from (Noisy) Loss Functions


Abstract in English

Machine learning classifiers rely on loss functions for performance evaluation, often on a private (hidden) dataset. Label inference was recently introduced as the problem of reconstructing the ground truth labels of this private dataset from just the (possibly perturbed) loss function values evaluated at chosen prediction vectors, without any other access to the hidden dataset. Existing results have demonstrated this inference is possible on specific loss functions like the cross-entropy loss. In this paper, we introduce the notion of codomain separability to formally study the necessary and sufficient conditions under which label inference is possible from any (noisy) loss function values. Using this notion, we show that for many commonly used loss functions, including multiclass cross-entropy with common activation functions and some Bregman divergence-based losses, it is possible to design label inference attacks for arbitrary noise levels. We demonstrate that these attacks can also be carried out through actual neural network models, and argue, both formally and empirically, the role of finite precision arithmetic in this setting.

Download