Do you want to publish a course? Click here

Spatiotemporal Fusion in Remote Sensing

137   0   0.0 ( 0 )
 Added by Rongjun Qin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Remote sensing images and techniques are powerful tools to investigate earth surface. Data quality is the key to enhance remote sensing applications and obtaining a clear and noise-free set of data is very difficult in most situations due to the varying acquisition (e.g., atmosphere and season), sensor, and platform (e.g., satellite angles and sensor characteristics) conditions. With the increasing development of satellites, nowadays Terabytes of remote sensing images can be acquired every day. Therefore, information and data fusion can be particularly important in the remote sensing community. The fusion integrates data from various sources acquired asynchronously for information extraction, analysis, and quality improvement. In this chapter, we aim to discuss the theory of spatiotemporal fusion by investigating previous works, in addition to describing the basic concepts and some of its applications by summarizing our prior and ongoing works.



rate research

Read More

Given the importance of remote sensing, surprisingly little attention has been paid to it by the representation learning community. To address it and to establish baselines and a common evaluation protocol in this domain, we provide simplified access to 5 diverse remote sensing datasets in a standardized form. Specifically, we investigate in-domain representation learning to develop generic remote sensing representations and explore which characteristics are important for a dataset to be a good source for remote sensing representation learning. The established baselines achieve state-of-the-art performance on these datasets.
This paper presents a generative model method for multispectral image fusion in remote sensing which is trained without supervision. This method eases the supervision of learning and it also considers a multi-objective loss function to achieve image fusion. The loss function incorporates both spectral and spatial distortions. Two discriminators are designed to minimize the spectral and spatial distortions of the generative output. Extensive experimentations are conducted using three public domain datasets. The comparison results across four reduced-resolution and three full-resolution objective metrics show the superiority of the developed method over several recently developed methods.
Deep Neural Networks (DNNs) learn representation from data with an impressive capability, and brought important breakthroughs for processing images, time-series, natural language, audio, video, and many others. In the remote sensing field, surveys and literature revisions specifically involving DNNs algorithms applications have been conducted in an attempt to summarize the amount of information produced in its subfields. Recently, Unmanned Aerial Vehicles (UAV) based applications have dominated aerial sensing research. However, a literature revision that combines both deep learning and UAV remote sensing thematics has not yet been conducted. The motivation for our work was to present a comprehensive review of the fundamentals of Deep Learning (DL) applied in UAV-based imagery. We focused mainly on describing classification and regression techniques used in recent applications with UAV-acquired data. For that, a total of 232 papers published in international scientific journal databases was examined. We gathered the published material and evaluated their characteristics regarding application, sensor, and technique used. We relate how DL presents promising results and has the potential for processing tasks associated with UAV-based image data. Lastly, we project future perspectives, commentating on prominent DL paths to be explored in the UAV remote sensing field. Our revision consists of a friendly-approach to introduce, commentate, and summarize the state-of-the-art in UAV-based image applications with DNNs algorithms in diverse subfields of remote sensing, grouping it in the environmental, urban, and agricultural contexts.
This paper presents a deep learning-based estimation of the intensity component of MultiSpectral bands by considering joint multiplication of the neighbouring spectral bands. This estimation is conducted as part of the component substitution approach for fusion of PANchromatic and MultiSpectral images in remote sensing. After computing the band dependent intensity components, a deep neural network is trained to learn the nonlinear relationship between a PAN image and its nonlinear intensity components. Low Resolution MultiSpectral bands are then fed into the trained network to obtain an estimate of High Resolution MultiSpectral bands. Experiments conducted on three datasets show that the developed deep learning-based estimation approach provides improved performance compared to the existing methods based on three objective metrics.
Automatically finding good and general remote sensing representations allows to perform transfer learning on a wide range of applications - improving the accuracy and reducing the required number of training samples. This paper investigates development of generic remote sensing representations, and explores which characteristics are important for a dataset to be a good source for representation learning. For this analysis, five diverse remote sensing datasets are selected and used for both, disjoint upstream representation learning and downstream model training and evaluation. A common evaluation protocol is used to establish baselines for these datasets that achieve state-of-the-art performance. As the results indicate, especially with a low number of available training samples a significant performance enhancement can be observed when including additionally in-domain data in comparison to training models from scratch or fine-tuning only on ImageNet (up to 11% and 40%, respectively, at 100 training samples). All datasets and pretrained representation models are published online.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا