No Arabic abstract
We systematically explore the self-assembly of semi-flexible polymers in deformable spherical confinement across a wide regime of chain stiffness, contour lengths and packing fractions by means of coarse-grained molecular dynamics simulations. Compliant, DNA-like filaments are found to undergo a continuous crossover from two distinct surface-ordered quadrupolar states, both characterized by tetrahedral patterns of topological defects, to either longitudinal or latitudinal bipolar structures with increasing polymer concentrations. These transitions, along with the intermediary arrangements that they involve, may be attributed to the combination of an orientational wetting phenomenon with subtle density- and contour-length-dependent variations in the elastic anisotropies of the corresponding liquid crystal phases. Conversely, the organization of rigid, microtubule-like polymers evidences a progressive breakdown of continuum elasticity theory as chain dimensions become comparable to the equilibrium radius of the encapsulating membrane. In this case, we observe a gradual shift from prolate, tactoid-like morphologies to oblate, erythrocyte-like structures with increasing contour lengths, which is shown to arise from the interplay between nematic ordering, polymer and membrane buckling. We further provide numerical evidence of a number of yet-unidentified, self-organized states in such confined systems of stiff achiral filaments, including spontaneous spiral smectic assemblies, faceted polyhedral and twisted bundle-like arrangements. Our results are quantified through the introduction of several order parameters and an unsupervised learning scheme for the localization of surface topological defects, and are in excellent agreement with field-theoretical predictions as well as classical elastic theories of thin rods and spherical shells.
Space-saving design is a requirement that is encountered in biological systems and the development of modern technological devices alike. Many living organisms dynamically pack their polymer chains, filaments or membranes inside of deformable vesicles or soft tissue like cell walls, chorions, and buds. Surprisingly little is known about morphogenesis due to growth in flexible confinements - perhaps owing to the daunting complexity lying in the nonlinear feedback between packed material and expandable cavity. Here we show by experiments and simulations how geometric and material properties lead to a plethora of morphologies when elastic filaments are growing far beyond the equilibrium size of a flexible thin sheet they are confined in. Depending on friction, sheet flexibility and thickness, we identify four distinct morphological phases emerging from bifurcation and present the corresponding phase diagram. Four order parameters quantifying the transitions between these phases are proposed.
We present a generic framework for modelling three-dimensional deformable shells of active matter that captures the orientational dynamics of the active particles and hydrodynamic interactions on the shell and with the surrounding environment. We find that the cross-talk between the self-induced flows of active particles and dynamic reshaping of the shell can result in conformations that are tunable by varying the form and magnitude of active stresses. We further demonstrate and explain how self-induced topological defects in the active layer can direct the morphodynamics of the shell. These findings are relevant to understanding morphological changes during organ development and the design of bio-inspired materials that are capable of self-organisation.
Morphogenetic dynamics of tissue sheets require coordinated cell shape changes regulated by global patterning of mechanical forces. Inspired by such biological phenomena, we propose a minimal mechanochemical model based on the notion that cell shape changes are induced by diffusible biomolecules that influence tissue contractility in a concentration-dependent manner -- and whose concentration is in turn affected by the macroscopic tissue shape. We perform computational simulations of thin shell elastic dynamics to reveal propagating chemical and three-dimensional deformation patterns arising due to a sequence of buckling instabilities. Depending on the concentration threshold that actuates cell shape change, we find qualitatively different patterns. The mechanochemically coupled patterning dynamics are distinct from those driven by purely mechanical or purely chemical factors. Using numerical simulations and theoretical arguments, we analyze the elastic instabilities that result from our model and provide simple scaling laws to identify wrinkling morphologies.
In this chapter we discuss how the results developed within the theory of fractals and Self-Organized Criticality (SOC) can be fruitfully exploited as ingredients of adaptive network models. In order to maintain the presentation self-contained, we first review the basic ideas behind fractal theory and SOC. We then briefly review some results in the field of complex networks, and some of the models that have been proposed. Finally, we present a self-organized model recently proposed by Garlaschelli et al. [Nat. Phys. 3, 813 (2007)] that couples the fitness network model defined by Caldarelli et al. [Phys. Rev. Lett. 89, 258702 (2002)] with the evolution model proposed by Bak and Sneppen [Phys. Rev. Lett. 71, 4083 (1993)] as a prototype of SOC. Remarkably, we show that the results obtained for the two models separately change dramatically when they are coupled together. This indicates that self-organized networks may represent an entirely novel class of complex systems, whose properties cannot be straightforwardly understood in terms of what we have learnt so far.
The motion of self-propelled particles is modeled as a persistent random walk. An analytical framework is developed that allows the derivation of exact expressions for the time evolution of arbitrary moments of the persistent walks displacement. It is shown that the interplay of step length and turning angle distributions and self-propulsion produces various signs of anomalous diffusion at short time scales and asymptotically a normal diffusion behavior with a broad range of diffusion coefficients. The crossover from the anomalous short time behavior to the asymptotic diffusion regime is studied and the parameter dependencies of the crossover time are discussed. Higher moments of the displacement distribution are calculated and analytical expressions for the time evolution of the skewness and the kurtosis of the distribution are presented.