No Arabic abstract
Homography estimation is an important task in computer vision, such as image stitching, video stabilization, and camera calibration. Traditional homography estimation methods heavily depend on the quantity and distribution of feature points, leading to poor robustness in textureless scenes. The learning solutions, on the contrary, try to learn robust deep features but demonstrate unsatisfying performance in the scenes of low overlap rates. In this paper, we address the two problems simultaneously, by designing a contextual correlation layer, which can capture the long-range correlation on feature maps and flexibly be bridged in a learning framework. In addition, considering that a single homography can not represent the complex spatial transformation in depth-varying images with parallax, we propose to predict multi-grid homography from global to local. Moreover, we equip our network with depth perception capability, by introducing a novel depth-aware shape-preserved loss. Extensive experiments demonstrate the superiority of our method over other state-of-the-art solutions in the synthetic benchmark dataset and real-world dataset. The codes and models will be available at https://github.com/nie-lang/Multi-Grid-Deep-Homogarphy.
In this paper, we address the problem of estimating dense depth from a sequence of images using deep neural networks. Specifically, we employ a dense-optical-flow network to compute correspondences and then triangulate the point cloud to obtain an initial depth map.Parts of the point cloud, however, may be less accurate than others due to lack of common observations or small parallax. To further increase the triangulation accuracy, we introduce a depth-refinement network (DRN) that optimizes the initial depth map based on the images contextual cues. In particular, the DRN contains an iterative refinement module (IRM) that improves the depth accuracy over iterations by refining the deep features. Lastly, the DRN also predicts the uncertainty in the refined depths, which is desirable in applications such as measurement selection for scene reconstruction. We show experimentally that our algorithm outperforms state-of-the-art approaches in terms of depth accuracy, and verify that our predicted uncertainty is highly correlated to the actual depth error.
In this paper, we introduce a new framework for unsupervised deep homography estimation. Our contributions are 3 folds. First, unlike previous methods that regress 4 offsets for a homography, we propose a homography flow representation, which can be estimated by a weighted sum of 8 pre-defined homography flow bases. Second, considering a homography contains 8 Degree-of-Freedoms (DOFs) that is much less than the rank of the network features, we propose a Low Rank Representation (LRR) block that reduces the feature rank, so that features corresponding to the dominant motions are retained while others are rejected. Last, we propose a Feature Identity Loss (FIL) to enforce the learned image feature warp-equivariant, meaning that the result should be identical if the order of warp operation and feature extraction is swapped. With this constraint, the unsupervised optimization is achieved more effectively and more stable features are learned. Extensive experiments are conducted to demonstrate the effectiveness of all the newly proposed components, and results show that our approach outperforms the state-of-the-art on the homography benchmark datasets both qualitatively and quantitatively. Code is available at https://github.com/megvii-research/BasesHomo.
We design a multiscopic vision system that utilizes a low-cost monocular RGB camera to acquire accurate depth estimation. Unlike multi-view stereo with images captured at unconstrained camera poses, the proposed system controls the motion of a camera to capture a sequence of images in horizontally or vertically aligned positions with the same parallax. In this system, we propose a new heuristic method and a robust learning-based method to fuse multiple cost volumes between the reference image and its surrounding images. To obtain training data, we build a synthetic dataset with multiscopic images. The experiments on the real-world Middlebury dataset and real robot demonstration show that our multiscopic vision system outperforms traditional two-frame stereo matching methods in depth estimation. Our code and dataset are available at https://sites.google.com/view/multiscopic.
Monocular depth estimation and semantic segmentation are two fundamental goals of scene understanding. Due to the advantages of task interaction, many works study the joint task learning algorithm. However, most existing methods fail to fully leverage the semantic labels, ignoring the provided context structures and only using them to supervise the prediction of segmentation split, which limit the performance of both tasks. In this paper, we propose a network injected with contextual information (CI-Net) to solve the problem. Specifically, we introduce self-attention block in the encoder to generate attention map. With supervision from the ideal attention map created by semantic label, the network is embedded with contextual information so that it could understand scene better and utilize correlated features to make accurate prediction. Besides, a feature sharing module is constructed to make the task-specific features deeply fused and a consistency loss is devised to make the features mutually guided. We evaluate the proposed CI-Net on the NYU-Depth-v2 and SUN-RGBD datasets. The experimental results validate that our proposed CI-Net could effectively improve the accuracy of semantic segmentation and depth estimation.
In recent years, unsupervised deep learning approaches have received significant attention to estimate the depth and visual odometry (VO) from unlabelled monocular image sequences. However, their performance is limited in challenging environments due to perceptual degradation, occlusions and rapid motions. Moreover, the existing unsupervised methods suffer from the lack of scale-consistency constraints across frames, which causes that the VO estimators fail to provide persistent trajectories over long sequences. In this study, we propose an unsupervised monocular deep VO framework that predicts six-degrees-of-freedom pose camera motion and depth map of the scene from unlabelled RGB image sequences. We provide detailed quantitative and qualitative evaluations of the proposed framework on a) a challenging dataset collected during the DARPA Subterranean challenge; and b) the benchmark KITTI and Cityscapes datasets. The proposed approach outperforms both traditional and state-of-the-art unsupervised deep VO methods providing better results for both pose estimation and depth recovery. The presented approach is part of the solution used by the COSTAR team participating at the DARPA Subterranean Challenge.