Do you want to publish a course? Click here

InfoNCE is a variational autoencoder

301   0   0.0 ( 0 )
 Added by Laurence Aitchison
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We show that a popular self-supervised learning method, InfoNCE, is a special case of a new family of unsupervised learning methods, the self-supervised variational autoencoder (SSVAE). SSVAEs circumvent the usual VAE requirement to reconstruct the data by using a carefully chosen implicit decoder. The InfoNCE objective was motivated as a simplified parametric mutual information estimator. Under one choice of prior, the SSVAE objective (i.e. the ELBO) is exactly equal to the mutual information (up to constants). Under an alternative choice of prior, the SSVAE objective is exactly equal to the simplified parametric mutual information estimator used in InfoNCE (up to constants). Importantly, the use of simplified parametric mutual information estimators is believed to be critical to obtain good high-level representations, and the SSVAE framework naturally provides a principled justification for using prior information to choose these estimators.



rate research

Read More

We develop a data driven approach to perform clustering and end-to-end feature learning simultaneously for streaming data that can adaptively detect novel clusters in emerging data. Our approach, Adaptive Nonparametric Variational Autoencoder (AdapVAE), learns the cluster membership through a Bayesian Nonparametric (BNP) modeling framework with Deep Neural Networks (DNNs) for feature learning. We develop a joint online variational inference algorithm to learn feature representations and clustering assignments simultaneously via iteratively optimizing the Evidence Lower Bound (ELBO). We resolve the catastrophic forgetting citep{kirkpatrick2017overcoming} challenges with streaming data by adopting generative samples from the trained AdapVAE using previous data, which avoids the need of storing and reusing past data. We demonstrate the advantages of our model including adaptive novel cluster detection without discarding useful information learned from past data, high quality sample generation and comparable clustering performance as end-to-end batch mode clustering methods on both image and text corpora benchmark datasets.
We show that unconverged stochastic gradient descent can be interpreted as a procedure that samples from a nonparametric variational approximate posterior distribution. This distribution is implicitly defined as the transformation of an initial distribution by a sequence of optimization updates. By tracking the change in entropy over this sequence of transformations during optimization, we form a scalable, unbiased estimate of the variational lower bound on the log marginal likelihood. We can use this bound to optimize hyperparameters instead of using cross-validation. This Bayesian interpretation of SGD suggests improved, overfitting-resistant optimization procedures, and gives a theoretical foundation for popular tricks such as early stopping and ensembling. We investigate the properties of this marginal likelihood estimator on neural network models.
Variational autoencoders (VAEs) are powerful generative models with the salient ability to perform inference. Here, we introduce a quantum variational autoencoder (QVAE): a VAE whose latent generative process is implemented as a quantum Boltzmann machine (QBM). We show that our model can be trained end-to-end by maximizing a well-defined loss-function: a quantum lower-bound to a variational approximation of the log-likelihood. We use quantum Monte Carlo (QMC) simulations to train and evaluate the performance of QVAEs. To achieve the best performance, we first create a VAE platform with discrete latent space generated by a restricted Boltzmann machine (RBM). Our model achieves state-of-the-art performance on the MNIST dataset when compared against similar approaches that only involve discrete variables in the generative process. We consider QVAEs with a smaller number of latent units to be able to perform QMC simulations, which are computationally expensive. We show that QVAEs can be trained effectively in regimes where quantum effects are relevant despite training via the quantum bound. Our findings open the way to the use of quantum computers to train QVAEs to achieve competitive performance for generative models. Placing a QBM in the latent space of a VAE leverages the full potential of current and next-generation quantum computers as sampling devices.
176 - Zheng Ding , Yifan Xu , Weijian Xu 2020
We propose an algorithm, guided variational autoencoder (Guided-VAE), that is able to learn a controllable generative model by performing latent representation disentanglement learning. The learning objective is achieved by providing signals to the latent encoding/embedding in VAE without changing its main backbone architecture, hence retaining the desirable properties of the VAE. We design an unsupervised strategy and a supervised strategy in Guided-VAE and observe enhanced modeling and controlling capability over the vanilla VAE. In the unsupervised strategy, we guide the VAE learning by introducing a lightweight decoder that learns latent geometric transformation and principal components; in the supervised strategy, we use an adversarial excitation and inhibition mechanism to encourage the disentanglement of the latent variables. Guided-VAE enjoys its transparency and simplicity for the general representation learning task, as well as disentanglement learning. On a number of experiments for representation learning, improved synthesis/sampling, better disentanglement for classification, and reduced classification errors in meta-learning have been observed.
286 - Jeeyung Kim , Alex Sim , Jinoh Kim 2020
Botnets are increasingly used by malicious actors, creating increasing threat to a large number of internet users. To address this growing danger, we propose to study methods to detect botnets, especially those that are hard to capture with the commonly used methods, such as the signature based ones and the existing anomaly-based ones. More specifically, we propose a novel machine learning based method, named Recurrent Variational Autoencoder (RVAE), for detecting botnets through sequential characteristics of network traffic flow data including attacks by botnets. We validate robustness of our method with the CTU-13 dataset, where we have chosen the testing dataset to have different types of botnets than those of training dataset. Tests show that RVAE is able to detect botnets with the same accuracy as the best known results published in literature. In addition, we propose an approach to assign anomaly score based on probability distributions, which allows us to detect botnets in streaming mode as the new networking statistics becomes available. This on-line detection capability would enable real-time detection of unknown botnets.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا