Do you want to publish a course? Click here

An Ensemble Noise-Robust K-fold Cross-Validation Selection Method for Noisy Labels

350   0   0.0 ( 0 )
 Added by Marcus Kalander
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We consider the problem of training robust and accurate deep neural networks (DNNs) when subject to various proportions of noisy labels. Large-scale datasets tend to contain mislabeled samples that can be memorized by DNNs, impeding the performance. With appropriate handling, this degradation can be alleviated. There are two problems to consider: how to distinguish clean samples and how to deal with noisy samples. In this paper, we present Ensemble Noise-robust K-fold Cross-Validation Selection (E-NKCVS) to effectively select clean samples from noisy data, solving the first problem. For the second problem, we create a new pseudo label for any sample determined to have an uncertain or likely corrupt label. E-NKCVS obtains multiple predicted labels for each sample and the entropy of these labels is used to tune the weight given to the pseudo label and the given label. Theoretical analysis and extensive verification of the algorithms in the noisy label setting are provided. We evaluate our approach on various image and text classification tasks where the labels have been manually corrupted with different noise ratios. Additionally, two large real-world noisy datasets are also used, Clothing-1M and WebVision. E-NKCVS is empirically shown to be highly tolerant to considerable proportions of label noise and has a consistent improvement over state-of-the-art methods. Especially on more difficult datasets with higher noise ratios, we can achieve a significant improvement over the second-best model. Moreover, our proposed approach can easily be integrated into existing DNN methods to improve their robustness against label noise.



rate research

Read More

87 - Lu Jiang , Di Huang , Mason Liu 2019
Performing controlled experiments on noisy data is essential in understanding deep learning across noise levels. Due to the lack of suitable datasets, previous research has only examined deep learning on controlled synthetic label noise, and real-world label noise has never been studied in a controlled setting. This paper makes three contributions. First, we establish the first benchmark of controlled real-world label noise from the web. This new benchmark enables us to study the web label noise in a controlled setting for the first time. The second contribution is a simple but effective method to overcome both synthetic and real noisy labels. We show that our method achieves the best result on our dataset as well as on two public benchmarks (CIFAR and WebVision). Third, we conduct the largest study by far into understanding deep neural networks trained on noisy labels across different noise levels, noise types, network architectures, and training settings. The data and code are released at the following link: http://www.lujiang.info/cnlw.html
Learning with curriculum has shown great effectiveness in tasks where the data contains noisy (corrupted) labels, since the curriculum can be used to re-weight or filter out noisy samples via proper design. However, obtaining curriculum from a learner itself without additional supervision or feedback deteriorates the effectiveness due to sample selection bias. Therefore, methods that involve two or more networks have been recently proposed to mitigate such bias. Nevertheless, these studies utilize the collaboration between networks in a way that either emphasizes the disagreement or focuses on the agreement while ignores the other. In this paper, we study the underlying mechanism of how disagreement and agreement between networks can help reduce the noise in gradients and develop a novel framework called Robust Collaborative Learning (RCL) that leverages both disagreement and agreement among networks. We demonstrate the effectiveness of RCL on both synthetic benchmark image data and real-world large-scale bioinformatics data.
220 - Jun Shu , Qian Zhao , Keyu Chen 2020
Robust loss minimization is an important strategy for handling robust learning issue on noisy labels. Current robust loss functions, however, inevitably involve hyperparameter(s) to be tuned, manually or heuristically through cross validation, which makes them fairly hard to be generally applied in practice. Besides, the non-convexity brought by the loss as well as the complicated network architecture makes it easily trapped into an unexpected solution with poor generalization capability. To address above issues, we propose a meta-learning method capable of adaptively learning hyperparameter in robust loss functions. Specifically, through mutual amelioration between robust loss hyperparameter and network parameters in our method, both of them can be simultaneously finely learned and coordinated to attain solutions with good generalization capability. Four kinds of SOTA robust loss functions are attempted to be integrated into our algorithm, and comprehensive experiments substantiate the general availability and effectiveness of the proposed method in both its accuracy and generalization performance, as compared with conventional hyperparameter tuning strategy, even with carefully tuned hyperparameters.
Robust loss functions are essential for training deep neural networks with better generalization power in the presence of noisy labels. Symmetric loss functions are confirmed to be robust to label noise. However, the symmetric condition is overly restrictive. In this work, we propose a new class of loss functions, namely textit{asymmetric loss functions}, which are robust to learning with noisy labels for various types of noise. We investigate general theoretical properties of asymmetric loss functions, including classification calibration, excess risk bound, and noise tolerance. Meanwhile, we introduce the asymmetry ratio to measure the asymmetry of a loss function. The empirical results show that a higher ratio would provide better noise tolerance. Moreover, we modify several commonly-used loss functions and establish the necessary and sufficient conditions for them to be asymmetric. Experimental results on benchmark datasets demonstrate that asymmetric loss functions can outperform state-of-the-art methods. The code is available at href{https://github.com/hitcszx/ALFs}{https://github.com/hitcszx/ALFs}
The current success of deep learning depends on large-scale labeled datasets. In practice, high-quality annotations are expensive to collect, but noisy annotations are more affordable. Previous works report mixed empirical results when training with noisy labels: neural networks can easily memorize random labels, but they can also generalize from noisy labels. To explain this puzzle, we study how architecture affects learning with noisy labels. We observe that if an architecture suits the task, training with noisy labels can induce useful hidden representations, even when the model generalizes poorly; i.e., the last few layers of the model are more negatively affected by noisy labels. This finding leads to a simple method to improve models trained on noisy labels: replacing the final dense layers with a linear model, whose weights are learned from a small set of clean data. We empirically validate our findings across three architectures (Convolutional Neural Networks, Graph Neural Networks, and Multi-Layer Perceptrons) and two domains (graph algorithmic tasks and image classification). Furthermore, we achieve state-of-the-art results on image classification benchmarks by combining our method with existing approaches on noisy label training.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا