A double-phase argon detector is excellent in particle identification and position reconstruction. However, the properties of the electroluminescence (EL) process for secondary light emission in the gas phase are not fully understood. The EL process was thought to be explained using an ordinary EL mechanism because of an argon excimer, but there were no visible light (VL) emissions in this mechanism. However, recent measurements indicated there were visible components in the argon gas electroluminescence, which was proposed to explain the visible light components by a new mechanism called neutral bremsstrahlung (NBrS). In this article, we studied gaseous argon electroluminescence in the VL region from 300 to 600 nm at room temperature and normal pressure using a gaseous time projection chamber (TPC). The secondary emission light from the TPC luminescence region was dispersed using a spectrometer. Then, the interpretation of the observed spectrum using the ordinary EL model, NBrS model, and the effect of nitrogen impurity was discussed.