Do you want to publish a course? Click here

Measurement of emission spectrum for gaseous argon electroluminescence in visible light region from 300 to 600 nm

72   0   0.0 ( 0 )
 Added by Masashi Tanaka
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A double-phase argon detector is excellent in particle identification and position reconstruction. However, the properties of the electroluminescence (EL) process for secondary light emission in the gas phase are not fully understood. The EL process was thought to be explained using an ordinary EL mechanism because of an argon excimer, but there were no visible light (VL) emissions in this mechanism. However, recent measurements indicated there were visible components in the argon gas electroluminescence, which was proposed to explain the visible light components by a new mechanism called neutral bremsstrahlung (NBrS). In this article, we studied gaseous argon electroluminescence in the VL region from 300 to 600 nm at room temperature and normal pressure using a gaseous time projection chamber (TPC). The secondary emission light from the TPC luminescence region was dispersed using a spectrometer. Then, the interpretation of the observed spectrum using the ordinary EL model, NBrS model, and the effect of nitrogen impurity was discussed.



rate research

Read More

Proportional electroluminescence (EL) in noble gases is used in two-phase detectors for dark matter searches to record (in the gas phase) the ionization signal induced by particle scattering in the liquid phase. The standard EL mechanism is considered to be due to noble gas excimer emission in the vacuum ultraviolet (VUV). In addition, there are two alternative mechanisms, producing light in the visible and near infrared (NIR) ranges. The first is due to bremsstrahlung of electrons scattered on neutral atoms (neutral bremsstrahlung, NBrS). The second, responsible for electron avalanche scintillation in the NIR at higher electric fields, is due to transitions between excited atomic states. In this work, we have for the first time demonstrated two alternative techniques of the optical readout of two-phase argon detectors, in the visible and NIR range, using a silicon photomultiplier matrix and electroluminescence due to either neutral bremsstrahlung or avalanche scintillation. The amplitude yield and position resolution were measured for these readout techniques, which allowed to assess the detection threshold for electron and nuclear recoils in two-phase argon detectors for dark matter searches. To the best of our knowledge, this is the first practical application of the NBrS effect in detection science.
Proportional electroluminescence (EL) in noble gases has long been used in two-phase detectors for dark matter search, to record ionization signals induced by particle scattering in the noble-gas liquid (S2 signals). Until recently, it was believed that proportional electroluminescence was fully due to VUV emission of noble gas excimers produced in atomic collisions with excited atoms, the latter being in turn produced by drifting electrons. In this work we consider an additional mechanism of proportional electroluminescence, namely that of bremsstrahlung of drifting electrons scattered on neutral atoms (so-called neutral bremsstrahlung); it is systemically studied here both theoretically and experimentally. In particular, the absolute EL yield has for the first time been measured in pure gaseous argon in the two-phase mode, using a dedicated two-phase detector with EL gap optically read out by cryogenic PMTs and SiPMs. We show that the neutral bremsstrahlung effect can explain two intriguing observations in EL radiation: that of the substantial contribution of the non-VUV spectral component, extending from the UV to NIR, and that of the photon emission at lower electric fields, below the Ar excitation threshold. Possible applications of neutral bremsstrahlung effect in two-phase dark matter detectors are discussed.
Proportional electroluminescence (EL) in noble gases is used in two-phase detectors for dark matter search to record ionization signals in the gas phase induced by particle scattering in the liquid phase (S2 signals). In this work, the EL pulse-shapes in a two-phase argon detector have for the first time been studied systematically in a wide range of reduced electric field, varying from 3 to 9 Td. The pulse-shapes were studied at different readout configurations and spectral ranges: using cryogenic PMTs and SiPMs, with and without a wavelength shifter (WLS), in the VUV and visible range. We observed the fast component and two unusual slow components, with time constants of about 5 $mu$s and 40 $mu$s. The unusual characteristic property of slow components was that their contribution and time constants increased with electric field.
We further study the effect of neutral bremsstrahlung (NBrS) in two-phase argon electroluminescence (EL), revealed recently in [1]. The absolute EL yield due to NBrS effect, in the visible and NIR range, was remeasured in pure gaseous argon in the two-phase mode, using a two-phase detector with EL gap read out directly by cryogenic PMTs and SiPMs. Possible applications of the NBrS effect in detection science are discussed, including those in two-phase dark matter detectors.
Presented here are first tests of a Gaseous Photomultiplier based on a cascade of Thick GEM structures intended for gamma-ray position reconstruction in liquid Argon. The detector has a MgF$_2$ window, transparent to VUV light, and a CsI photocathode deposited on the first THGEM. A gain of $8cdot10^{5}$ per photoelectron and $sim100%$ photoelectron collection efficiency are measured at stable operation settings. The excellent position resolution capabilities of the detector (better than 100 $mu$m) at 100 kHz readout rate, is demonstrated at room temperature. Structural integrity tests of the detector and seals are successfully performed at cryogenic temperatures by immersing the detector in liquid Nitrogen, laying a good foundation for future operation tests in noble liquids.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا