We present GIGANTES, the most extensive and realistic void catalog suite ever released -- containing over 1 billion cosmic voids covering a volume larger than the observable Universe, more than 20 TB of data, and created by running the void finder VIDE on QUIJOTEs halo simulations. The expansive and detailed GIGANTES suite, spanning thousands of cosmological models, opens up the study of voids, answering compelling questions: Do voids carry unique cosmological information? How is this information correlated with galaxy information? Leveraging the large number of voids in the GIGANTES suite, our Fisher constraints demonstrate voids contain additional information, critically tightening constraints on cosmological parameters. We use traditional void summary statistics (void size function, void density profile) and the void auto-correlation function, which independently yields an error of $0.13,mathrm{eV}$ on $sum,m_{ u}$ for a 1 $h^{-3}mathrm{Gpc}^3$ simulation, without CMB priors. Combining halos and voids we forecast an error of $0.09,mathrm{eV}$ from the same volume. Extrapolating to next generation multi-Gpc$^3$ surveys such as DESI, Euclid, SPHEREx, and the Roman Space Telescope, we expect voids should yield an independent determination of neutrino mass. Crucially, GIGANTES is the first void catalog suite expressly built for intensive machine learning exploration. We illustrate this by training a neural network to perform likelihood-free inference on the void size function. Cosmology problems provide an impetus to develop novel deep learning techniques, leveraging the symmetries embedded throughout the universe from physical laws, interpreting models, and accurately predicting errors. With GIGANTES, machine learning gains an impressive dataset, offering unique problems that will stimulate new techniques.