Physics-Informed Graph Learning for Robust Fault Location in Distribution Systems


Abstract in English

The rapid growth of distributed energy resources potentially increases power grid instability. One promising strategy is to employ data in power grids to efficiently respond to abnormal events (e.g., faults) by detection and location. Unfortunately, most existing works lack physical interpretation and are vulnerable to the practical challenges: sparse observation, insufficient labeled datasets, and stochastic environment. We propose a physics-informed graph learning framework of two stages to handle these challenges when locating faults. Stage- I focuses on informing a graph neural network (GNN) with the geometrical structure of power grids; stage-II employs the physical similarity of labeled and unlabeled data samples to improve the location accuracy. We provide a random walk-based the underpinning of designing our GNNs to address the challenge of sparse observation and augment the correct prediction probability. We compare our approach with three baselines in the IEEE 123-node benchmark system, showing that the proposed method outperforms the others by significant margins, especially when label rates are low. Also, we validate the robustness of our algorithms to out-of-distribution-data (ODD) due to topology changes and load variations. Additionally, we adapt our graph learning framework to the IEEE 37-node test feeder and show high location performance with the proposed training strategy.

Download