Do you want to publish a course? Click here

Semi-Uniform Feller Stochastic Kernels

278   0   0.0 ( 0 )
 Added by Eugene Feinberg
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

This paper studies transition probabilities from a Borel subset of a Polish space to a product of two Borel subsets of Polish spaces. For such transition probabilities it introduces and studies semi-uniform Feller continuity and a weaker property called WTV-continuity. This paper provides several equivalent definitions of semi-uniform Feller continuity and describes the preservation property of WTV-continuity under integration. The motivation for this study came from the theory of Markov decision processes with incomplete information, and this paper provides fundamental results useful for this theory.



rate research

Read More

We show that the Markov semigroups generated by a large class of singular stochastic PDEs satisfy the strong Feller property. These include for example the KPZ equation and the dynamical $Phi^4_3$ model. As a corollary, we prove that the Brownian bridge measure is the unique invariant measure for the KPZ equation with periodic boundary conditions.
This paper studies average-cost Markov decision processes with semi-uniform Feller transition probabilities. This class of MDPs was recently introduced by the authors to study MDPs with incomplete information. This paper studies the validity of optimality inequalities, the existence of optimal policies, and the approximations of optimal policies by policies optimizing total discounted costs.
This paper deals with control of partially observable discrete-time stochastic systems. It introduces and studies the class of Markov Decision Processes with Incomplete information and with semi-uniform Feller transition probabilities. The important feature of this class of models is that the classic reduction of such a model with incomplete observation to the completely observable Markov Decision Process with belief states preserves semi-uniform Feller continuity of transition probabilities. Under mild assumptions on cost functions, optimal policies exist, optimality equations hold, and value iterations converge to optimal values for this class of models. In particular, for Partially Observable Markov Decision Processes the results of this paper imply new and generalize several known sufficient conditions on transition and observation probabilities for the existence of optimal policies, validity of optimality equations, and convergence of value iterations.
We provide existence, uniqueness and stability results for affine stochastic Volterra equations with $L^1$-kernels and jumps. Such equations arise as scaling limits of branching processes in population genetics and self-exciting Hawkes processes in mathematical finance. The strategy we adopt for the existence part is based on approximations using stochastic Volterra equations with $L^2$-kernels combined with a general stability result. Most importantly, we establish weak uniqueness using a duality argument on the Fourier--Laplace transform via a deterministic Riccati--Volterra integral equation. We illustrate the applicability of our results on Hawkes processes and a class of hyper-rough Volterra Heston models with a Hurst index $H in (-1/2,1/2]$.
In this paper we address an open question formulated in [17]. That is, we extend the It{^o}-Tanaka trick, which links the time-average of a deterministic function f depending on a stochastic process X and F the solution of the Fokker-Planck equation associated to X, to random mappings f. To this end we provide new results on a class of adpated and non-adapted Fokker-Planck SPDEs and BSPDEs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا