Do you want to publish a course? Click here

Recovering the Unbiased Scene Graphs from the Biased Ones

96   0   0.0 ( 0 )
 Added by Meng-Jiun Chiou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Given input images, scene graph generation (SGG) aims to produce comprehensive, graphical representations describing visual relationships among salient objects. Recently, more efforts have been paid to the long tail problem in SGG; however, the imbalance in the fraction of missing labels of different classes, or reporting bias, exacerbating the long tail is rarely considered and cannot be solved by the existing debiasing methods. In this paper we show that, due to the missing labels, SGG can be viewed as a Learning from Positive and Unlabeled data (PU learning) problem, where the reporting bias can be removed by recovering the unbiased probabilities from the biased ones by utilizing label frequencies, i.e., the per-class fraction of labeled, positive examples in all the positive examples. To obtain accurate label frequency estimates, we propose Dynamic Label Frequency Estimation (DLFE) to take advantage of training-time data augmentation and average over multiple training iterations to introduce more valid examples. Extensive experiments show that DLFE is more effective in estimating label frequencies than a naive variant of the traditional estimate, and DLFE significantly alleviates the long tail and achieves state-of-the-art debiasing performance on the VG dataset. We also show qualitatively that SGG models with DLFE produce prominently more balanced and unbiased scene graphs.



rate research

Read More

Todays scene graph generation (SGG) task is still far from practical, mainly due to the severe training bias, e.g., collapsing diverse human walk on / sit on / lay on beach into human on beach. Given such SGG, the down-stream tasks such as VQA can hardly infer better scene structures than merely a bag of objects. However, debiasing in SGG is not trivial because traditional debiasing methods cannot distinguish between the good and bad bias, e.g., good context prior (e.g., person read book rather than eat) and bad long-tailed bias (e.g., near dominating behind / in front of). In this paper, we present a novel SGG framework based on causal inference but not the conventional likelihood. We first build a causal graph for SGG, and perform traditional biased training with the graph. Then, we propose to draw the counterfactual causality from the trained graph to infer the effect from the bad bias, which should be removed. In particular, we use Total Direct Effect (TDE) as the proposed final predicate score for unbiased SGG. Note that our framework is agnostic to any SGG model and thus can be widely applied in the community who seeks unbiased predictions. By using the proposed Scene Graph Diagnosis toolkit on the SGG benchmark Visual Genome and several prevailing models, we observed significant improvements over the previous state-of-the-art methods.
Reasoning about complex visual scenes involves perception of entities and their relations. Scene graphs provide a natural representation for reasoning tasks, by assigning labels to both entities (nodes) and relations (edges). Unfortunately, reasoning systems based on SGs are typically trained in a two-step procedure: First, training a model to predict SGs from images; Then, a separate model is created to reason based on predicted SGs. In many domains, it is preferable to train systems jointly in an end-to-end manner, but SGs are not commonly used as intermediate components in visual reasoning systems because being discrete and sparse, scene-graph representations are non-differentiable and difficult to optimize. Here we propose Differentiable Scene Graphs (DSGs), an image representation that is amenable to differentiable end-to-end optimization, and requires supervision only from the downstream tasks. DSGs provide a dense representation for all regions and pairs of regions, and do not spend modelling capacity on areas of the images that do not contain objects or relations of interest. We evaluate our model on the challenging task of identifying referring relationships (RR) in three benchmark datasets, Visual Genome, VRD and CLEVR. We describe a multi-task objective, and train in an end-to-end manner supervised by the downstream RR task. Using DSGs as an intermediate representation leads to new state-of-the-art performance.
Labeling objects at a subordinate level typically requires expert knowledge, which is not always available when using random annotators. As such, learning directly from web images for fine-grained recognition has attracted broad attention. However, the presence of label noise and hard examples in web images are two obstacles for training robust fine-grained recognition models. Therefore, in this paper, we propose a novel approach for removing irrelevant samples from real-world web images during training, while employing useful hard examples to update the network. Thus, our approach can alleviate the harmful effects of irrelevant noisy web images and hard examples to achieve better performance. Extensive experiments on three commonly used fine-grained datasets demonstrate that our approach is far superior to current state-of-the-art web-supervised methods.
Scene graphs are powerful representations that parse images into their abstract semantic elements, i.e., objects and their interactions, which facilitates visual comprehension and explainable reasoning. On the other hand, commonsense knowledge graphs are rich repositories that encode how the world is structured, and how general concepts interact. In this paper, we present a unified formulation of these two constructs, where a scene graph is seen as an image-conditioned instantiation of a commonsense knowledge graph. Based on this new perspective, we re-formulate scene graph generation as the inference of a bridge between the scene and commonsense graphs, where each entity or predicate instance in the scene graph has to be linked to its corresponding entity or predicate class in the commonsense graph. To this end, we propose a novel graph-based neural network that iteratively propagates information between the two graphs, as well as within each of them, while gradually refining their bridge in each iteration. Our Graph Bridging Network, GB-Net, successively infers edges and nodes, allowing to simultaneously exploit and refine the rich, heterogeneous structure of the interconnected scene and commonsense graphs. Through extensive experimentation, we showcase the superior accuracy of GB-Net compared to the most recent methods, resulting in a new state of the art. We publicly release the source code of our method.
Today, scene graph generation(SGG) task is largely limited in realistic scenarios, mainly due to the extremely long-tailed bias of predicate annotation distribution. Thus, tackling the class imbalance trouble of SGG is critical and challenging. In this paper, we first discover that when predicate labels have strong correlation with each other, prevalent re-balancing strategies(e.g., re-sampling and re-weighting) will give rise to either over-fitting the tail data(e.g., bench sitting on sidewalk rather than on), or still suffering the adverse effect from the original uneven distribution(e.g., aggregating varied parked on/standing on/sitting on into on). We argue the principal reason is that re-balancing strategies are sensitive to the frequencies of predicates yet blind to their relatedness, which may play a more important role to promote the learning of predicate features. Therefore, we propose a novel Predicate-Correlation Perception Learning(PCPL for short) scheme to adaptively seek out appropriate loss weights by directly perceiving and utilizing the correlation among predicate classes. Moreover, our PCPL framework is further equipped with a graph encoder module to better extract context features. Extensive experiments on the benchmark VG150 dataset show that the proposed PCPL performs markedly better on tail classes while well-preserving the performance on head ones, which significantly outperforms previous state-of-the-art methods.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا