Do you want to publish a course? Click here

Ensemble and Auxiliary Tasks for Data-Efficient Deep Reinforcement Learning

91   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Ensemble and auxiliary tasks are both well known to improve the performance of machine learning models when data is limited. However, the interaction between these two methods is not well studied, particularly in the context of deep reinforcement learning. In this paper, we study the effects of ensemble and auxiliary tasks when combined with the deep Q-learning algorithm. We perform a case study on ATARI games under limited data constraint. Moreover, we derive a refined bias-variance-covariance decomposition to analyze the different ways of learning ensembles and using auxiliary tasks, and use the analysis to help provide some understanding of the case study. Our code is open source and available at https://github.com/NUS-LID/RENAULT.



rate research

Read More

136 - Lixin Zou , Long Xia , Linfang Hou 2021
Sequential decision-making under cost-sensitive tasks is prohibitively daunting, especially for the problem that has a significant impact on peoples daily lives, such as malaria control, treatment recommendation. The main challenge faced by policymakers is to learn a policy from scratch by interacting with a complex environment in a few trials. This work introduces a practical, data-efficient policy learning method, named Variance-Bonus Monte Carlo Tree Search~(VB-MCTS), which can copy with very little data and facilitate learning from scratch in only a few trials. Specifically, the solution is a model-based reinforcement learning method. To avoid model bias, we apply Gaussian Process~(GP) regression to estimate the transitions explicitly. With the GP world model, we propose a variance-bonus reward to measure the uncertainty about the world. Adding the reward to the planning with MCTS can result in more efficient and effective exploration. Furthermore, the derived polynomial sample complexity indicates that VB-MCTS is sample efficient. Finally, outstanding performance on a competitive world-level RL competition and extensive experimental results verify its advantage over the state-of-the-art on the challenging malaria control task.
94 - Yao Yao , Li Xiao , Zhicheng An 2021
Model-based deep reinforcement learning has achieved success in various domains that require high sample efficiencies, such as Go and robotics. However, there are some remaining issues, such as planning efficient explorations to learn more accurate dynamic models, evaluating the uncertainty of the learned models, and more rational utilization of models. To mitigate these issues, we present MEEE, a model-ensemble method that consists of optimistic exploration and weighted exploitation. During exploration, unlike prior methods directly selecting the optimal action that maximizes the expected accumulative return, our agent first generates a set of action candidates and then seeks out the optimal action that takes both expected return and future observation novelty into account. During exploitation, different discounted weights are assigned to imagined transition tuples according to their model uncertainty respectively, which will prevent model predictive error propagation in agent training. Experiments on several challenging continuous control benchmark tasks demonstrated that our approach outperforms other model-free and model-based state-of-the-art methods, especially in sample complexity.
Modeling the dynamics of real-world physical systems is critical for spatiotemporal prediction tasks, but challenging when data is limited. The scarcity of real-world data and the difficulty in reproducing the data distribution hinder directly applying meta-learning techniques. Although the knowledge of governing partial differential equations (PDE) of data can be helpful for the fast adaptation to few observations, it is mostly infeasible to exactly find the equation for observations in real-world physical systems. In this work, we propose a framework, physics-aware meta-learning with auxiliary tasks, whose spatial modules incorporate PDE-independent knowledge and temporal modules utilize the generalized features from the spatial modules to be adapted to the limited data, respectively. The framework is inspired by a local conservation law expressed mathematically as a continuity equation and does not require the exact form of governing equation to model the spatiotemporal observations. The proposed method mitigates the need for a large number of real-world tasks for meta-learning by leveraging spatial information in simulated data to meta-initialize the spatial modules. We apply the proposed framework to both synthetic and real-world spatiotemporal prediction tasks and demonstrate its superior performance with limited observations.
Transfer Learning (TL) has shown great potential to accelerate Reinforcement Learning (RL) by leveraging prior knowledge from past learned policies of relevant tasks. Existing transfer approaches either explicitly computes the similarity between tasks or select appropriate source policies to provide guided explorations for the target task. However, how to directly optimize the target policy by alternatively utilizing knowledge from appropriate source policies without explicitly measuring the similarity is currently missing. In this paper, we propose a novel Policy Transfer Framework (PTF) to accelerate RL by taking advantage of this idea. Our framework learns when and which source policy is the best to reuse for the target policy and when to terminate it by modeling multi-policy transfer as the option learning problem. PTF can be easily combined with existing deep RL approaches. Experimental results show it significantly accelerates the learning process and surpasses state-of-the-art policy transfer methods in terms of learning efficiency and final performance in both discrete and continuous action spaces.
Deep reinforcement learning (RL) agents often fail to generalize to unseen scenarios, even when they are trained on many instances of semantically similar environments. Data augmentation has recently been shown to improve the sample efficiency and generalization of RL agents. However, different tasks tend to benefit from different kinds of data augmentation. In this paper, we compare three approaches for automatically finding an appropriate augmentation. These are combined with two novel regularization terms for the policy and value function, required to make the use of data augmentation theoretically sound for certain actor-critic algorithms. We evaluate our methods on the Procgen benchmark which consists of 16 procedurally-generated environments and show that it improves test performance by ~40% relative to standard RL algorithms. Our agent outperforms other baselines specifically designed to improve generalization in RL. In addition, we show that our agent learns policies and representations that are more robust to changes in the environment that do not affect the agent, such as the background. Our implementation is available at https://github.com/rraileanu/auto-drac.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا