Multiband effects can lead to fundamentally different electronic behavior of solids, as exemplified by the possible emergence of Fermi surfaces of Bogoliubov quasiparticles in centrosymmetric superconductors which break time-reversal symmetry. We extend the analysis of possible pairing symmetries, the corresponding nodal structure, and the Bogoliubov Fermi surfaces in two directions: We include nonlocal pairing and we consider internal degrees of freedom other than the effective angular momentum of length $j=3/2$ examined so far. Since our main focus is on the Bogoliubov Fermi surfaces we concentrate on even-parity pairing. The required symmetry analysis is illustrated for several examples, as a guide for the reader. We find that the inclusion of nonlocal pairing leads to a much larger range of possible pairing symmetries. For infinitesimal pairing strength, we find a simple yet powerful criterion for nodes in terms of a scalar product of form factors.