No Arabic abstract
Various applications of advanced air mobility (AAM) in urban environments facilitate our daily life and public services. As one of the key issues of realizing these applications autonomously, path planning problem has been studied with main objectives on minimizing travel distance, flight time and energy cost. However, AAM operations in metropolitan areas bring safety and society issues. Because most of AAM aircraft are unmanned aerial vehicles (UAVs) and they may fail to operate resulting in fatality risk, property damage risk and societal impacts (noise and privacy) to the public. To quantitatively assess these risks and mitigate them in planning phase, this paper proposes an integrated risk assessment model and develops a hybrid algorithm to solve the risk-based 3D path planning problem. The integrated risk assessment method considers probability and severity models of UAV impact ground people and vehicle. By introducing gravity model, the population density and traffic density are estimated in a finer scale, which enables more accurate risk assessment. The 3D risk-based path planning problem is first formulated as a special minimum cost flow problem. Then, a hybrid estimation of distribution algorithm (EDA) and risk-based A* (named as EDA-RA*) algorithm is proposed to solve the problem. To improve computational efficiency, k-means clustering method is incorporated into EDA-RA* to provide both global and local search heuristic information, which formed the EDA and fast risk-based A* algorithm we call EDA-FRA*. Case study results show that the risk assessment model can capture high risk areas and the generated risk map enables safe UAV path planning in urban complex environments.
Planning in environments with other agents whose future actions are uncertain often requires compromise between safety and performance. Here our goal is to design efficient planning algorithms with guaranteed bounds on the probability of safety violation, which nonetheless achieve non-conservative performance. To quantify a systems risk, we define a natural criterion called interval risk bounds (IRBs), which provide a parametric upper bound on the probability of safety violation over a given time interval or task. We present a novel receding horizon algorithm, and prove that it can satisfy a desired IRB. Our algorithm maintains a dynamic risk budget which constrains the allowable risk at each iteration, and guarantees recursive feasibility by requiring a safe set to be reachable by a contingency plan within the budget. We empirically demonstrate that our algorithm is both safer and less conservative than strong baselines in two simulated autonomous driving experiments in scenarios involving collision avoidance with other vehicles, and additionally demonstrate our algorithm running on an autonomous class 8 truck.
To move through the world, mobile robots typically use a receding-horizon strategy, wherein they execute an old plan while computing a new plan to incorporate new sensor information. A plan should be dynamically feasible, meaning it obeys constraints like the robots dynamics and obstacle avoidance; it should have liveness, meaning the robot does not stop to plan so frequently that it cannot accomplish tasks; and it should be optimal, meaning that the robot tries to satisfy a user-specified cost function such as reaching a goal location as quickly as possible. Reachability-based Trajectory Design (RTD) is a planning method that can generate provably dynamically-feasible plans. However, RTD solves a nonlinear polynmial optimization program at each planning iteration, preventing optimality guarantees; furthermore, RTD can struggle with liveness because the robot must brake to a stop when the solver finds local minima or cannot find a feasible solution. This paper proposes RTD*, which certifiably finds the globally optimal plan (if such a plan exists) at each planning iteration. This method is enabled by a novel Parallelized Constrained Bernstein Algorithm (PCBA), which is a branch-and-bound method for polynomial optimization. The contributions of this paper are: the implementation of PCBA; proofs of bounds on the time and memory usage of PCBA; a comparison of PCBA to state of the art solvers; and the demonstration of PCBA/RTD* on a mobile robot. RTD* outperforms RTD in terms of optimality and liveness for real-time planning in a variety of environments with randomly-placed obstacles.
Safe-interval path planning (SIPP) is a powerful algorithm for finding a path in the presence of dynamic obstacles. SIPP returns provably optimal solutions. However, in many practical applications of SIPP such as path planning for robots, one would like to trade-off optimality for shorter planning time. In this paper we explore different ways to build a bounded-suboptimal SIPP and discuss their pros and cons. We compare the different bounded-suboptima
We consider the stochastic shortest path planning problem in MDPs, i.e., the problem of designing policies that ensure reaching a goal state from a given initial state with minimum accrued cost. In order to account for rare but important realizations of the system, we consider a nested dynamic coherent risk total cost functional rather than the conventional risk-neutral total expected cost. Under some assumptions, we show that optimal, stationary, Markovian policies exist and can be found via a special Bellmans equation. We propose a computational technique based on difference convex programs (DCPs) to find the associated value functions and therefore the risk-averse policies. A rover navigation MDP is used to illustrate the proposed methodology with conditional-value-at-risk (CVaR) and entropic-value-at-risk (EVaR) coherent risk measures.
In this paper, we study the path planning for a cellular-connected unmanned aerial vehicle (UAV) to minimize its flying distance from given initial to final locations, while ensuring a target link quality in terms of the large-scale channel gain with each of its associated ground base stations (GBSs) during the flight. To this end, we propose the use of radio map that provides the information on the large-scale channel gains between each GBS and uniformly sampled locations on a three-dimensional (3D) grid over the region of interest, which are assumed to be time-invariant due to the generally static and large-size obstacles therein (e.g., buildings). Based on the given radio maps of the GBSs, we first obtain the optimal UAV path by solving an equivalent shortest path problem (SPP) in graph theory. To reduce the computation complexity of the optimal solution, we further propose a grid quantization method whereby the grid points in each GBSs radio map are more coarsely sampled by exploiting the spatial channel correlation over neighboring grids. Then, we solve the approximate SPP over the reduced-size radio map (graph) more efficiently. Numerical results show that the proposed solutions can effectively minimize the flying distance of the UAV subject to its communication quality constraint. Moreover, a flexible trade-off between performance and complexity can be achieved by adjusting the quantization ratio for the radio map.