Do you want to publish a course? Click here

Light-induced quantum anomalous Hall effect on the 2D surfaces of 3D topological insulators

107   0   0.0 ( 0 )
 Added by Haowei Xu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum anomalous Hall (QAH) effect generates quantized electric charge Hall conductance without external magnetic field. It requires both nontrivial band topology and time-reversal symmetry (TRS) breaking. In most cases, one could break the TRS of time-reversal invariant topological materials to yield QAH effect, which is essentially a topological phase transition. Conventional topological phase transition induced by external field/stimulus needs a route along which the bandgap closes and re-opens. Hence, the phase transition occurs only when the magnitude of field/stimulus is larger than a critical value. In this work we propose that using gapless surface states, the transition can happen at arbitrarily weak (but finite) external field strength. This can be regarded as an unconventional topological phase transition, where the bandgap closing is guaranteed by bulk-edge correspondence and symmetries, while the bandgap reopening is induced by external fields. We demonstrate this concept on the 2D surface states of 3D topological insulators like $rm Bi_2Se_3$, which become 2D QAH insulators once a circularly polarized light is turned on, according to van Vlecks effective Hamiltonian in Floquet time crystal theory. The sign of quantized Chern number can be controlled via the chirality of the light. This provides a convenient and dynamical approach to trigger topological phase transitions and create QAH insulators.



rate research

Read More

Quantum anomalous Hall effect (QAHE) has been experimentally observed in magnetically doped topological insulators. However, ultra-low temperature (usually below 300 mK), which is mainly attributed to inhomogeneous magnetic doping, becomes a daunting challenge for potential applications. Here, a textit{nonmagnetic}-doping strategy is proposed to produce ferromagnetism and realize QAHE in topological insulators. We numerically demonstrated that magnetic moments can be induced by nitrogen or carbon substitution in Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$, but only nitrogen-doped Sb$_2$Te$_3$ exhibits long-range ferromagnetism and preserve large bulk band gap. We further show that its corresponding thin-film can harbor QAHE at temperatures of 17-29 Kelvin, which is two orders of magnitude higher than the typical temperatures in similar systems. Our proposed textit{nonmagnetic} doping scheme may shed new light in experimental realization of high-temperature QAHE in topological insulators.
While ferromagnets have been known and exploited for millennia, antiferromagnets (AFMs) were only discovered in the 1930s. The elusive nature indicates AFMs unique properties: At large scale, due to the absence of global magnetization, AFMs may appear to behave like any non-magnetic material; However, such a seemingly mundane macroscopic magnetic property is highly nontrivial at microscopic level, where opposite spin alignment within the AFM unit cell forms a rich internal structure. In topological AFMs, such an internal structure leads to a new possibility, where topology and Berry phase can acquire distinct spatial textures. Here, we study this exciting possibility in an AFM Axion insulator, even-layered MnBi$_2$Te$_4$ flakes, where spatial degrees of freedom correspond to different layers. Remarkably, we report the observation of a new type of Hall effect, the layer Hall effect, where electrons from the top and bottom layers spontaneously deflect in opposite directions. Specifically, under no net electric field, even-layered MnBi$_2$Te$_4$ shows no anomalous Hall effect (AHE); However, applying an electric field isolates the response from one layer and leads to the surprising emergence of a large layer-polarized AHE (~50%$frac{e^2}{h}$). Such a layer Hall effect uncovers a highly rare layer-locked Berry curvature, which serves as a unique character of the space-time $mathcal{PT}$-symmetric AFM topological insulator state. Moreover, we found that the layer-locked Berry curvature can be manipulated by the Axion field, E$cdot$B, which drives the system between the opposite AFM states. Our results achieve previously unavailable pathways to detect and manipulate the rich internal spatial structure of fully-compensated topological AFMs. The layer-locked Berry curvature represents a first step towards spatial engineering of Berry phase, such as through layer-specific moire potential.
An intriguing observation on the quantum anomalous Hall effect (QAHE) in magnetic topological insulators (MTIs) is the dissipative edge states, where quantized Hall resistance is accompanied by nonzero longitudinal resistance. We numerically investigate this dissipative behavior of QAHE in MTIs with a three-dimensional tight-binding model and non-equilibrium Greens function formalism. It is found that, in clean samples, the geometric mismatch between the detecting electrodes and the MTI sample leads to additional scattering in the central Hall bar, which is similar to the effect of splitting gates in the traditional Hall effect. As a result, while the Hall resistance remains quantized, the longitudinal resistance deviates from zero due to such additional scattering. It is also shown that external magnetic fields as well as disorder scattering can suppress the dissipation of the longitudinal resistance. These results are in good agreement with previous experimental observations and provide insight on the fabrication of QAHE devices.
260 - Rui Yu , Wei Zhang , H. J. Zhang 2010
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant
A short review paper for the quantum anomalous Hall effect. A substantially extended one is published as Adv. Phys. 64, 227 (2015).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا