No Arabic abstract
Data provenance collects comprehensive information about the events and operations in a computer system at both application and system levels. It provides a detailed and accurate history of transactions that help delineate the data flow scenario across the whole system. Data provenance helps achieve system resilience by uncovering several malicious attack traces after a system compromise that are leveraged by the analyzer to understand the attack behavior and discover the level of damage. Existing literature demonstrates a number of research efforts on information capture, management, and analysis of data provenance. In recent years, provenance in IoT devices attracts several research efforts because of the proliferation of commodity IoT devices. In this survey paper, we present a comparative study of the state-of-the-art approaches to provenance by classifying them based on frameworks, deployed techniques, and subjects of interest. We also discuss the emergence and scope of data provenance in IoT networks. Finally, we present the urgency in several directions that data provenance needs to pursue, including data management and analysis.
Cash payment is still king in several markets, accounting for more than 90 of the payments in almost all the developing countries. The usage of mobile phones is pretty ordinary in this present era. Mobile phones have become an inseparable friend for many users, serving much more than just communication tools. Every subsequent person is heavily relying on them due to multifaceted usage and affordability. Every person wants to manage his/her daily transactions and related issues by using his/her mobile phone. With the rise and advancements of mobile-specific security, threats are evolving as well. In this paper, we provide a survey of various security models for mobile phones. We explore multiple proposed models of the mobile payment system (MPS), their technologies and comparisons, payment methods, different security mechanisms involved in MPS, and provide analysis of the encryption technologies, authentication methods, and firewall in MPS. We also present current challenges and future directions of mobile phone security.
Mixed reality (MR) technology development is now gaining momentum due to advances in computer vision, sensor fusion, and realistic display technologies. With most of the research and development focused on delivering the promise of MR, there is only barely a few working on the privacy and security implications of this technology. This survey paper aims to put in to light these risks, and to look into the latest security and privacy work on MR. Specifically, we list and review the different protection approaches that have been proposed to ensure user and data security and privacy in MR. We extend the scope to include work on related technologies such as augmented reality (AR), virtual reality (VR), and human-computer interaction (HCI) as crucial components, if not the origins, of MR, as well as numerous related work from the larger area of mobile devices, wearables, and Internet-of-Things (IoT). We highlight the lack of investigation, implementation, and evaluation of data protection approaches in MR. Further challenges and directions on MR security and privacy are also discussed.
With the emergence of 5G, Internet of Things (IoT) has become a center of attraction for almost all industries due to its wide range of applications from various domains. The explosive growth of industrial control processes and the industrial IoT, imposes unprecedented vulnerability to cyber threats in critical infrastructure through the interconnected systems. This new security threats could be minimized by lightweight cryptography, a sub-branch of cryptography, especially derived for resource-constrained devices such as RFID tags, smart cards, wireless sensors, etc. More than four dozens of lightweight cryptography algorithms have been proposed, designed for specific application(s). These algorithms exhibit diverse hardware and software performances in different circumstances. This paper presents the performance comparison along with their reported cryptanalysis, mainly for lightweight block ciphers, and further shows new research directions to develop novel algorithms with right balance of cost, performance and security characteristics.
Big data has generated strong interest in various scientific and engineering domains over the last few years. Despite many advantages and applications, there are many challenges in big data to be tackled for better quality of service, e.g., big data analytics, big data management, and big data privacy and security. Blockchain with its decentralization and security nature has the great potential to improve big data services and applications. In this article, we provide a comprehensive survey on blockchain for big data, focusing on up-to-date approaches, opportunities, and future directions. First, we present a brief overview of blockchain and big data as well as the motivation behind their integration. Next, we survey various blockchain services for big data, including blockchain for secure big data acquisition, data storage, data analytics, and data privacy preservation. Then, we review the state-of-the-art studies on the use of blockchain for big data applications in different vertical domains such as smart city, smart healthcare, smart transportation, and smart grid. For a better understanding, some representative blockchain-big data projects are also presented and analyzed. Finally, challenges and future directions are discussed to further drive research in this promising area.
The advancement in the healthcare sector is entering into a new era in the form of Health 4.0. The integration of innovative technologies like Cyber-Physical Systems (CPS), Big Data, Cloud Computing, Machine Learning, and Blockchain with Healthcare services has led to improved performance and efficiency through data-based learning and interconnection of systems. On the other hand, it has also increased complexities and has brought its own share of vulnerabilities due to the heavy influx, sharing, and storage of healthcare data. The protection of the same from cyber-attacks along with privacy preservation through authenticated access is one of the significant challenges for the healthcare sector. For this purpose, the use of blockchain-based networks can lead to a considerable reduction in the vulnerabilities of the healthcare systems and secure their data. This chapter explores blockchains role in strengthening healthcare data security by answering the questions related to what data use, when we need, why we need, who needs, and how state-of-the-art techniques use blockchains to secure healthcare data. As a case study, we also explore and analyze the state-of-the-art implementations for blockchain in healthcare data security for the COVID-19 pandemic. In order to provide a path to future research directions, we identify and discuss the technical limitations and regulatory challenges associated with blockchain-based healthcare data security implementation.