Domain Adaptation for Sentiment Analysis Using Increased Intraclass Separation


Abstract in English

Sentiment analysis is a costly yet necessary task for enterprises to study the opinions of their customers to improve their products and to determine optimal marketing strategies. Due to the existence of a wide range of domains across different products and services, cross-domain sentiment analysis methods have received significant attention. These methods mitigate the domain gap between different applications by training cross-domain generalizable classifiers which help to relax the need for data annotation for each domain. Most existing methods focus on learning domain-agnostic representations that are invariant with respect to both the source and the target domains. As a result, a classifier that is trained using the source domain annotated data would generalize well in a related target domain. We introduce a new domain adaptation method which induces large margins between different classes in an embedding space. This embedding space is trained to be domain-agnostic by matching the data distributions across the domains. Large intraclass margins in the source domain help to reduce the effect of domain shift on the classifier performance in the target domain. Theoretical and empirical analysis are provided to demonstrate that the proposed method is effective.

Download