Lefschetz Theorem Using Real Morse Theory


Abstract in English

We prove the Lefschetz hyperplane section theorem using a simpler machinery by making the observation that we can compose the Lefschetz Pencil with a Real Morse function to get a map from the variety to $mathbb{R}$ which is close to being a Real Morse function. The proof uses a new method unlike the conventional one which uses vanishing cycles, thimbles and monodromy. We prove the genus formula for plane curves using Morse theory, Lefschetz pencil and Bezouts theorem. And then we prove the Riemann Hurwitz formula for ramified maps between curves by employing techniques from deformation theory. Lastly, we prove the Lefschetz Hyperplane Section Theorem solely using Real Morse Theory and exact sequences.

Download