Computable Stone spaces


Abstract in English

We investigate computable metrizability of Polish spaces up to homeomorphism. In this paper we focus on Stone spaces. We use Stone duality to construct the first known example of a computable topological Polish space not homeomorphic to any computably metrized space. In fact, in our proof we construct a right-c.e. metrized Stone space which is not homeomorphic to any computably metrized space. Then we introduce a new notion of effective categoricity for effectively compact spaces and prove that effectively categorical Stone spaces are exactly the duals of computably categorical Boolean algebras. Finally, we prove that, for a Stone space $X$, the Banach space $C(X;mathbb{R})$ has a computable presentation if, and only if, $X$ is homeomorphic to a computably metrized space. This gives an unexpected positive partial answer to a question recently posed by McNicholl.

Download