Do you want to publish a course? Click here

EAR-NET: Error Attention Refining Network For Retinal Vessel Segmentation

486   0   0.0 ( 0 )
 Added by Jun Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The precise detection of blood vessels in retinal images is crucial to the early diagnosis of the retinal vascular diseases, e.g., diabetic, hypertensive and solar retinopathies. Existing works often fail in predicting the abnormal areas, e.g, sudden brighter and darker areas and are inclined to predict a pixel to background due to the significant class imbalance, leading to high accuracy and specificity while low sensitivity. To that end, we propose a novel error attention refining network (ERA-Net) that is capable of learning and predicting the potential false predictions in a two-stage manner for effective retinal vessel segmentation. The proposed ERA-Net in the refine stage drives the model to focus on and refine the segmentation errors produced in the initial training stage. To achieve this, unlike most previous attention approaches that run in an unsupervised manner, we introduce a novel error attention mechanism which considers the differences between the ground truth and the initial segmentation masks as the ground truth to supervise the attention map learning. Experimental results demonstrate that our method achieves state-of-the-art performance on two common retinal blood vessel datasets.



rate research

Read More

Retinal blood vessel can assist doctors in diagnosis of eye-related diseases such as diabetes and hypertension, and its segmentation is particularly important for automatic retinal image analysis. However, it is challenging to segment these vessels structures, especially the thin capillaries from the color retinal image due to low contrast and ambiguousness. In this paper, we propose pyramid U-Net for accurate retinal vessel segmentation. In pyramid U-Net, the proposed pyramid-scale aggregation blocks (PSABs) are employed in both the encoder and decoder to aggregate features at higher, current and lower levels. In this way, coarse-to-fine context information is shared and aggregated in each block thus to improve the location of capillaries. To further improve performance, two optimizations including pyramid inputs enhancement and deep pyramid supervision are applied to PSABs in the encoder and decoder, respectively. For PSABs in the encoder, scaled input images are added as extra inputs. While for PSABs in the decoder, scaled intermediate outputs are supervised by the scaled segmentation labels. Extensive evaluations show that our pyramid U-Net outperforms the current state-of-the-art methods on the public DRIVE and CHASE-DB1 datasets.
120 - Zhuojie Wu , Muyi Sun 2021
3D to 2D retinal vessel segmentation is a challenging problem in Optical Coherence Tomography Angiography (OCTA) images. Accurate retinal vessel segmentation is important for the diagnosis and prevention of ophthalmic diseases. However, making full use of the 3D data of OCTA volumes is a vital factor for obtaining satisfactory segmentation results. In this paper, we propose a Progressive Attention-Enhanced Network (PAENet) based on attention mechanisms to extract rich feature representation. Specifically, the framework consists of two main parts, the three-dimensional feature learning path and the two-dimensional segmentation path. In the three-dimensional feature learning path, we design a novel Adaptive Pooling Module (APM) and propose a new Quadruple Attention Module (QAM). The APM captures dependencies along the projection direction of volumes and learns a series of pooling coefficients for feature fusion, which efficiently reduces feature dimension. In addition, the QAM reweights the features by capturing four-group cross-dimension dependencies, which makes maximum use of 4D feature tensors. In the two-dimensional segmentation path, to acquire more detailed information, we propose a Feature Fusion Module (FFM) to inject 3D information into the 2D path. Meanwhile, we adopt the Polarized Self-Attention (PSA) block to model the semantic interdependencies in spatial and channel dimensions respectively. Experimentally, our extensive experiments on the OCTA-500 dataset show that our proposed algorithm achieves state-of-the-art performance compared with previous methods.
Learning structural information is critical for producing an ideal result in retinal image segmentation. Recently, convolutional neural networks have shown a powerful ability to extract effective representations. However, convolutional and pooling operations filter out some useful structural information. In this paper, we propose an Attention Guided Network (AG-Net) to preserve the structural information and guide the expanding operation. In our AG-Net, the guided filter is exploited as a structure sensitive expanding path to transfer structural information from previous feature maps, and an attention block is introduced to exclude the noise and reduce the negative influence of background further. The extensive experiments on two retinal image segmentation tasks (i.e., blood vessel segmentation, optic disc and cup segmentation) demonstrate the effectiveness of our proposed method.
The segmentation of the retinal vasculature from eye fundus images represents one of the most fundamental tasks in retinal image analysis. Over recent years, increasingly complex approaches based on sophisticated Convolutional Neural Network architectures have been slowly pushing performance on well-established benchmark datasets. In this paper, we take a step back and analyze the real need of such complexity. Specifically, we demonstrate that a minimalistic version of a standard U-Net with several orders of magnitude less parameters, carefully trained and rigorously evaluated, closely approximates the performance of current best techniques. In addition, we propose a simple extension, dubbed W-Net, which reaches outstanding performance on several popular datasets, still using orders of magnitude less learnable weights than any previously published approach. Furthermore, we provide the most comprehensive cross-dataset performance analysis to date, involving up to 10 different databases. Our analysis demonstrates that the retinal vessel segmentation problem is far from solved when considering test images that differ substantially from the training data, and that this task represents an ideal scenario for the exploration of domain adaptation techniques. In this context, we experiment with a simple self-labeling strategy that allows us to moderately enhance cross-dataset performance, indicating that there is still much room for improvement in this area. Finally, we also test our approach on the Artery/Vein segmentation problem, where we again achieve results well-aligned with the state-of-the-art, at a fraction of the model complexity in recent literature. All the code to reproduce the results in this paper is released.
109 - Xu Sun , Xingxing Cao , Yehui Yang 2020
Retinal vessel segmentation is a fundamental step in screening, diagnosis, and treatment of various cardiovascular and ophthalmic diseases. Robustness is one of the most critical requirements for practical utilization, since the test images may be captured using different fundus cameras, or be affected by various pathological changes. We investigate this problem from a data augmentation perspective, with the merits of no additional training data or inference time. In this paper, we propose two new data augmentation modules, namely, channel-wise random Gamma correction and channel-wise random vessel augmentation. Given a training color fundus image, the former applies random gamma correction on each color channel of the entire image, while the latter intentionally enhances or decreases only the fine-grained blood vessel regions using morphological transformations. With the additional training samples generated by applying these two modules sequentially, a model could learn more invariant and discriminating features against both global and local disturbances. Experimental results on both real-world and synthetic datasets demonstrate that our method can improve the performance and robustness of a classic convolutional neural network architecture. Source codes are available https://github.com/PaddlePaddle/Research/tree/master/CV/robust_vessel_segmentation
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا