No Arabic abstract
We present observations of a giant Lyman-alpha blob in the SSA22 proto-cluster at z=3.1, SSA22-LAB1, taken with the Atacama Large Millimeter/submillimeter Array (ALMA). Dust continuum, along with [C II]158um, and CO(4-3) line emission have been detected in LAB1, showing complex morphology and kinematics across a ~100 kpc central region. Seven galaxies at z=3.0987-3.1016 in the surroundings are identified in [C II] and dust continuum emission, with two of them potential companions or tidal structures associated with the most massive galaxies. Spatially resolved [C II] and infrared luminosity ratios for the widely distributed media (L[C II]/LIR~0.01-0.001) suggest that the observed extended interstellar media are likely to have originated from star-formation activity and the contribution from shocked gas is probably not dominant. LAB1 is found to harbour a total molecular gas mass Mmol=(8.7+/-2.0)e+10 Msun, concentrated in the core region of the Ly-alpha-emitting area. While (primarily obscured) star-formation activity in the LAB1 core is one of the most plausible power sources for the Ly-alpha emission, multiple major-mergers found in the core may also play a role in making LAB1 exceptionally bright and extended in Ly-alpha as a result of cooling radiation induced by gravitational interactions.
We present new Atacama Large Millimeter/Submillimeter Array (ALMA) 850um continuum observations of the original Lyman-alpha Blob (LAB) in the SSA22 field at z=3.1 (SSA22-LAB01). The ALMA map resolves the previously identified submillimeter source into three components with total flux density S_850 = 1.68+/-0.06 mJy, corresponding to a star formation rate of ~150 M_sun/yr. The submillimeter sources are associated with several faint (m~27 mag) rest-frame ultraviolet sources identified in Hubble Space Telescope Imaging Spectrograph (STIS) clear filter imaging (~5850A). One of these companions is spectroscopically confirmed with Keck MOSFIRE to lie within 20 projected kpc and 250 km/s of one of the ALMA components. We postulate that some of these STIS sources represent a population of low-mass star-forming satellites surrounding the central submillimeter sources, potentially contributing to their growth and activity through accretion. Using a high resolution cosmological zoom simulation of a 10^13 M_sun halo at z=3, including stellar, dust and Ly-alpha radiative transfer, we can model the ALMA+STIS observations and demonstrate that Ly-alpha photons escaping from the central submillimeter sources are expected to resonantly scatter in neutral hydrogen, the majority of which is predicted to be associated with halo substructure. We show how this process gives rise to extended Ly-alpha emission with similar surface brightness and morphology to observed giant LABs.
Hydrogen Lyman-$alpha$ (Ly$alpha$) emission has been one of the major observational probes for the high redshift universe, since the first discoveries of high-$z$ Ly$alpha$ emitting galaxies in the late 1990s. Due to the strong Ly$alpha$ emission originated by resonant scattering and recombination of the most-abundant element, Ly$alpha$ observations witness not only HII regions of star formation and AGN but also diffuse HI gas in the circum-galactic medium (CGM) and the inter-galactic medium (IGM). Here we review Ly$alpha$ sources, and present theoretical interpretations reached to date. We conclude that: 1) A typical Ly$alpha$ emitter (LAE) at $zgtrsim 2$ with a $L^*$ Ly$alpha$ luminosity is a high-$z$ counterpart of a local dwarf galaxy, a compact metal-poor star-forming galaxy (SFG) with an approximate stellar (halo) mass and star-formation rate of $10^{8-9} M_odot$ ($10^{10-11} M_odot$) and $1-10 M_odot$ yr$^{-1}$, respectively; 2) High-$z$ SFGs ubiquitously have a diffuse Ly$alpha$ emitting halo in the CGM extending to the halo virial radius and beyond; 3) Remaining neutral hydrogen at the epoch of reionization makes a strong dimming of Ly$alpha$ emission for galaxies at $z>6$ that suggest the late reionization history. The next generation large telescope projects will combine Ly$alpha$ emission data with HI Ly$alpha$ absorptions and 21cm radio data that map out the majority of hydrogen (HI+HII) gas, uncovering the exchanges of i) matter by outflow/inflow and ii) radiation, relevant to cosmic reionization, between galaxies and the CGM/IGM.
We present IRAM PdBI observations of the CO(3-2) and CO(5-4) line transitions from a Ly-alpha blob at z~2.7 in order to investigate the gas kinematics, determine the location of the dominant energy source, and study the physical conditions of the molecular gas. CO line and dust continuum emission are detected at the location of a strong MIPS source that is offset by ~1.5 from the Ly-alpha peak. Neither of these emission components is resolved with the 1.7 beam, showing that the gas and dust are confined to within ~7kpc from this galaxy. No millimeter source is found at the location of the Ly-alpha peak, ruling out a central compact source of star formation as the power source for the Ly-alpha emission. Combined with a spatially-resolved spectrum of Ly-alpha and HeII, we constrain the kinematics of the extended gas using the CO emission as a tracer of the systemic redshift. Near the MIPS source, the Ly-alpha profile is symmetric and its line center agrees with that of CO line, implying that there are no significant bulk flows and that the photo-ionization from the MIPS source might be the dominant source of the Ly-alpha emission. In the region near the Ly-alpha peak, the gas is slowly receding (~100km/s) with respect to the MIPS source, thus making the hyper-/superwind hypothesis unlikely. We find a sub-thermal line ratio between two CO transitions, I_CO(5-4)/I_CO(3-2)=0.97+/-0.21. This line ratio is lower than the average values found in high-z SMGs and QSOs, but consistent with the value found in the Galactic center, suggesting that there is a large reservoir of low-density molecular gas that is spread over the MIPS source and its vicinity.
Lyman-$alpha$ blobs (LABs) are spatially extended nebulae of emission in the Ly$alpha$ line of hydrogen, seen at high redshifts$^{1,2}$, and most commonly found in the dense environment of star-forming galaxies$^{3,4}$. The origin of Ly$alpha$ emission in the LABs is still unclear and under debate$^{5}$. Proposed powering sources generally fall into two categories: (1) photoionization, galactic super-winds/outflows, resonant scattering of Ly$alpha$ photons from starbursts or active galactic nuclei (AGNs)$^{6,7,8,9,10}$ and (2) cooling radiation from cold streams of gas accreting onto galaxies$^{12}$. Here we analyze the gas kinematics within a LAB providing rare observational evidence for infalling gas. This is consistent with the release of gravitational accretion energy as cold streams radiate Ly$alpha$ photons. It also provides direct evidence for possible cold streams feeding the central galaxies. The infalling gas is not important by mass but hints at more than one mechanism to explain the origin of the extended Ly$alpha$ emission around young galaxies. It is also possible that the infalling gas may represent material falling back to the galaxy from where it originated, forming a galactic fountain.
We report the result from observations conducted with the Atacama Large Millimeter/submillimeter Array (ALMA) to detect [CII] 158 um fine structure line emission from galaxies embedded in one of the most spectacular Lyman-alpha blobs (LABs) at z=3.1, SSA22-LAB1. Of three dusty star-forming galaxies previously discovered by ALMA 860 um dust continuum survey toward SSA22-LAB1, we detected the [CII] line from one, LAB1-ALMA3 at z=3.0993+/-0.0004. No line emission was detected, associated with the other ALMA continuum sources or from three rest-frame UV/optical selected z_spec~3.1 galaxies within the field of view. For LAB1-ALMA3, we find relatively bright [CII] emission compared to the infrared luminosity (L_[CII]/L_[CII]) and an extremely high [CII] 158 um and [NII] 205 um emission line ratio (L_[CII]/L_[NII]>55). The relatively strong [CII] emission may be caused by abundant photodissociation regions and sub-solar metallicity, or by shock heating. The origin of the unusually strong [CII] emission could be causally related to the location within the giant LAB, although the relationship between extended Lyman-alpha emission and ISM conditions of associated galaxies is yet to be understand.