Do you want to publish a course? Click here

SPH modelling of wind-companion interactions in eccentric AGB binary systems

93   0   0.0 ( 0 )
 Added by Jolien Malfait
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The late evolutionary stages of low- and intermediate-mass stars are characterised by mass loss through a dust-driven stellar wind. Recent observations reveal complex structures within these winds, that are believed to be formed primarily via interaction with a companion. How these complexities arise, and which structures are formed in which type of systems, is still poorly understood. Particularly, there is a lack of studies investigating the structure formation in eccentric systems. We aim to improve our understanding of the wind morphology of eccentric AGB binary systems by investigating the mechanism responsible for the different small-scale structures and global morphologies that arise in a polytropic wind with different velocities. Using the smoothed particle hydrodynamics (SPH) code Phantom, we generate nine different high-resolution, 3D simulations of an AGB star with a solar-mass companion with various wind velocity and eccentricity combinations. The models assume a polytropic gas, with no additional cooling. We conclude that for models with a high wind velocity, the short interaction with the companion results in a regular spiral morphology, that is flattened. In the case of a lower wind velocity, the stronger interaction results in the formation of a high-energy region and bow-shock structure that can shape the wind into an irregular morphology if instabilities arise. High-eccentricity models show a complex, phase-dependent interaction leading to wind structures that are irregular in three dimensions. However, the significant interaction with the companion compresses matter into an equatorial density enhancement, irrespective of eccentricity.



rate research

Read More

89 - S. Maes , W. Homan , J. Malfait 2021
Asymptotic giant branch (AGB) stars are known to lose a significant amount of mass by a stellar wind, which controls the remainder of their stellar lifetime. High angular-resolution observations show that the winds of these cool stars typically exhibit mid- to small-scale density perturbations such as spirals and arcs, believed to be caused by the gravitational interaction with a (sub-)stellar companion. We aim to explore the effects of the wind-companion interaction on the 3D density and velocity distribution of the wind, as a function of three key parameters: wind velocity, binary separation and companion mass. For the first time, we compare the impact on the outflow of a planetary companion to that of a stellar companion. We intend to devise a morphology classification scheme based on a singular parameter. With our grid of models we cover the prominent morphology changes in a companion-perturbed AGB outflow: slow winds with a close, massive binary companion show a more complex morphology. Additionally, we prove that massive planets are able to significantly impact the density structure of an AGB wind. We find that the interaction with a companion affects the terminal velocity of the wind, which can be explained by the gravitational slingshot mechanism. We distinguish between two types of wind focussing to the orbital plane resulting from distinct mechanisms: global flattening of the outflow as a result of the AGB stars orbital motion and the formation of an EDE as a consequence of the companions gravitational pull. We investigate different morphology classification schemes and uncover that the ratio of the gravitational potential energy density of the companion to the kinetic energy density of the AGB outflow yields a robust classification parameter for the models presented in this paper.
In low-mass binary systems, mass transfer is likely to occur via a slow and dense stellar wind when one of the stars is in the AGB phase. Observations show that many binaries that have undergone AGB mass transfer have orbital periods of 1-10 yr, at odds with the predictions of binary population synthesis models. We investigate the mass-accretion efficiency and angular-momentum loss via wind mass transfer in AGB binary systems. We use these quantities to predict the evolution of the orbit. We perform 3D hydrodynamical simulations of the stellar wind lost by an AGB star using the AMUSE framework. We approximate the thermal evolution of the gas by imposing a simple effective cooling balance and we vary the orbital separation and the velocity of the stellar wind. We find that for wind velocities $v_{infty}$ larger than the relative orbital velocity of the system $v_mathrm{orb}$ the flow is described by the Bondi-Hoyle-Lyttleton approximation and the angular-momentum loss is modest, leading to an expansion of the orbit. For low wind velocities an accretion disk is formed around the companion and the accretion efficiency as well as the angular-momentum loss are enhanced, implying that the orbit will shrink. We find that the transfer of angular momentum from the orbit to the outflowing gas occurs within a few orbital separations from the center of mass of the binary. Our results suggest that the orbital evolution of AGB binaries can be predicted as a function of the ratio $v_{infty}/v_mathrm{orb}$. Our results can provide insight into the puzzling orbital periods of post-AGB binaries and suggest that the number of stars entering into the common-envelope phase will increase. The latter can have significant implications for the expected formation rates of the end products of low-mass binary evolution, such as cataclysmic binaries, type Ia supernova and double white-dwarf mergers. [ABRIDGED]
Binary post-asymptotic giant branch (post-AGB) stars have orbital periods in the range of 100--2500 days in eccentric orbits. They are surrounded by circumbinary dusty discs. They are the immediate result of unconstrained binary interaction processes. Their observed orbital properties do not correspond to model predictions: Neither the periods nor the high eccentricities are expected. Our goal is to investigate if interactions between a binary and its circumbinary disc during the post-AGB phase can result in their eccentric orbits, while simultaneously explaining the chemical anomaly known as depletion. For this paper, we selected three binaries (EP Lyr, RU Cen, HD 46703) with well-constrained orbits, luminosities, and chemical abundances. We used the MESA code to evolve post-AGB models, while including the accretion of metal-poor gas. This allows us to constrain the evolution of the stars and study the impact of circumbinary discs on the orbital properties of the models. We investigate the effect of torques produced by gas inside the binary cavity and the effect of Lindblad resonances on the orbit, while also including the tidal interaction following the equilibrium tide model. We find that none of our models are able to explain the high orbital eccentricities of the binaries in our sample. The accretion torque does not significantly impact the binary orbit, while Lindblad resonances can pump the eccentricity up to only $e approx 0.2$. At higher eccentricities, the tidal interaction becomes too strong, so the high observed eccentricities cannot be reproduced. However, even if we assume tides to be ineffective, the eccentricities in our models do not exceed $approx 0.25$. We conclude that either our knowledge of disc-binary interactions is still incomplete, or the binaries must have left their phase of strong interaction in an eccentric orbit.
158 - P. G. Beck , K. Hambleton , J. Vos 2014
The unparalleled photometric data obtained by NASAs Kepler Space Telescope has led to improved understanding of red-giant stars and binary stars. We discuss the characterization of known eccentric system, containing a solar-like oscillating red-giant primary component. We also report several new binary systems that are candidates for hosting an oscillating companion. A powerful approach to study binary stars is to combine asteroseimic techniques with light curve fitting. Seismology allows us to deduce the properties of red giants. In addition, by modeling the ellipsoidal modulations we can constrain the parameters of the binary system. An valuable independent source are ground-bases, high-resolution spectrographs.
Aims: We simulate the spectra of massive binaries at different phases of the orbital cycle, accounting for the gravitational influence of the companion star on the shape and physical properties of the stellar surface. Methods: We used the Roche potential modified to account for radiation pressure to compute the stellar surface of close circular systems and we used the TIDES code for surface computation of eccentric systems. In both cases, we accounted for gravity darkening and mutual heating generated by irradiation to compute the surface temperature. We then interpolated NLTE plane-parallel atmosphere model spectra in a grid to obtain the local spectrum at each surface point. We finally summed all contributions, accounting for the Doppler shift, limb-darkening, and visibility to obtain the total synthetic spectrum. We computed different orbital phases and sets of physical and orbital parameters. Results: Our models predict line strength variations through the orbital cycle, but fail to completely reproduce the Struve-Sahade effect. Including radiation pressure allows us to reproduce a surface temperature distribution that is consistent with observations of semi-detached binary systems. Conclusions: Radiation pressure effects on the stellar surface are weak in (over)contact binaries and well-detached systems but can become very significant in semi-detached systems. The classical von Zeipel theorem is sufficient for the spectral computation. Broad-band light curves derived from the spectral computation are different from those computed with a model in which the stellar surfaces are equipotentials of the Roche potential scaled by the instantaneous orbital separation. In many cases, the fit of two Gaussian/Lorentzian profiles fails to properly measure the equivalent width of the lines and leads to apparent variations that could explain some of the effects reported in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا