Do you want to publish a course? Click here

The LEGA-C and SAMI Galaxy Surveys: Quiescent Stellar Populations and the Mass-Size Plane across 6 Gyr

108   0   0.0 ( 0 )
 Added by Tania Barone
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the change in mean stellar population age and metallicity ([Z/H]) scaling relations for quiescent galaxies from intermediate redshift ($0.60leq zleq0.76$) using the LEGA-C Survey, to low redshift ($0.014leq zleq0.10$) using the SAMI Galaxy Survey. We find that, similarly to their low-redshift counterparts, the stellar metallicity of quiescent galaxies at $0.60leq zleq 0.76$ closely correlates with $M_*/R_mathrm{e}$ (a proxy for the gravitational potential or escape velocity), in that galaxies with deeper potential wells are more metal-rich. This supports the hypothesis that the relation arises due to the gravitational potential regulating the retention of metals, by determining the escape velocity required by metal-rich stellar and supernova ejecta to escape the system and avoid being recycled into later stellar generations. On the other hand, we find no correlation between stellar age and $M_*/R_mathrm{e}^2$ (stellar mass surface density $Sigma$) in the LEGA-C sample, despite this being a strong relation at low redshift. We consider this change in the age--$Sigma$ relation in the context of the redshift evolution of the star-forming and quiescent populations in the mass--size plane, and find our results can be explained as a consequence of galaxies forming more compactly at higher redshifts, and remaining compact throughout their evolution. Furthermore, galaxies appear to quench at a characteristic surface density that decreases with decreasing redshift. The $zsim 0$ age--$Sigma$ relation is therefore a result of building up the quiescent and star-forming populations with galaxies that formed at a range of redshifts and so a range of surface densities.



rate research

Read More

We present an analysis of the global stellar populations of galaxies in the SAMI Galaxy Survey. Our sample consists of 1319 galaxies spanning four orders of magnitude in stellar mass and includes all morphologies and environments. We derive luminosity-weighted, single stellar population equivalent stellar ages, metallicities and alpha enhancements from spectra integrated within one effective radius apertures. Variations in galaxy size explain the majority of the scatter in the age--mass and metallicity--mass relations. Stellar populations vary systematically in the plane of galaxy size and stellar mass, such that galaxies with high stellar surface mass density are older, more metal-rich and alpha-enhanced than less dense galaxies. Galaxies with high surface mass densities have a very narrow range of metallicities, however, at fixed mass, the spread in metallicity increases substantially with increasing galaxy size (decreasing density). We identify residual correlations with morphology and environment. At fixed mass and size, galaxies with late-type morphologies, small bulges and low Sersic n are younger than early-type, high n, high bulge-to-total galaxies. Age and metallicity both show small residual correlations with environment; at fixed mass and size, galaxies in denser environments or more massive halos are older and somewhat more metal rich than those in less dense environments. We connect these trends to evolutionary tracks within the size--mass plane.
We study the Fundamental Plane (FP) for a volume- and luminosity-limited sample of 560 early-type galaxies from the SAMI survey. Using r-band sizes and luminosities from new Multi-Gaussian Expansion (MGE) photometric measurements, and treating luminosity as the dependent variable, the FP has coefficients a=1.294$pm$0.039, b= 0.912$pm$0.025, and zero-point c= 7.067$pm$0.078. We leverage the high signal-to-noise of SAMI integral field spectroscopy, to determine how structural and stellar-population observables affect the scatter about the FP. The FP residuals correlate most strongly (8$sigma$ significance) with luminosity-weighted simple-stellar-population (SSP) age. In contrast, the structural observables surface mass density, rotation-to-dispersion ratio, Sersic index and projected shape all show little or no significant correlation. We connect the FP residuals to the empirical relation between age (or stellar mass-to-light ratio $Upsilon_star$) and surface mass density, the best predictor of SSP age amongst parameters based on FP observables. We show that the FP residuals (anti-)correlate with the residuals of the relation between surface density and $Upsilon_star$. This correlation implies that part of the FP scatter is due to the broad age and $Upsilon_star$ distribution at any given surface mass density. Using virial mass and $Upsilon_star$ we construct a simulated FP and compare it to the observed FP. We find that, while the empirical relations between observed stellar population relations and FP observables are responsible for most (75%) of the FP scatter, on their own they do not explain the observed tilt of the FP away from the virial plane.
We perform a comprehensive study of the stellar population properties of quiescent galaxies as a function of size and stellar mass to constrain the physical mechanism governing the stellar mass assembly and the likely evolutive scenarios that explain their growth in size. After selecting all the quiescent galaxies from the ALHAMBRA survey by the dust-corrected stellar mass$-$colour diagram, we built a shared sample of $sim850$ quiescent galaxies with reliable sizes from the HST. The stellar population properties were retrieved using the SED-fitting code MUFFIT with various sets of composite stellar population models. Age, formation epoch, metallicity, and extinction were studied on the stellar mass$-$size plane as function of size through a Monte Carlo approach. This accounted for uncertainties and degeneracy effects amongst stellar population properties. The stellar population properties of quiescent galaxies and their stellar mass and size since $zsim1$ are correlated. At fixed stellar mass, the more compact the quiescent galaxy, the older and richer in metals it is ($1$Gyr and $0.1$dex, respectively). In addition, more compact galaxies may present slight lower extinctions than their more extended counterparts at the same stellar mass ($<0.1$ mag). By means of studying constant regions of stellar population properties across the stellar mass$-$size plane, we obtained empirical relations to constrain the physical mechanism that governs the stellar mass assembly of the form $M_star propto r_mathrm{c}^alpha$, where $alpha$ amounts to $0.50-0.55 pm 0.09$. There are indications that support the idea that the velocity dispersion is tightly correlated with the stellar content of galaxies. The mechanisms driving the evolution of stellar populations can therefore be partly linked to the dynamical properties of galaxies, along with their gravitational potential.
We explore the connection between the kinematics, structures and stellar populations of massive galaxies at $0.6<z<1.0$ using the Fundamental Plane (FP). Combining stellar kinematic data from the Large Early Galaxy Astrophysics Census (LEGA-C) survey with structural parameters measured from deep Hubble Space Telescope imaging, we obtain a sample of 1419 massive ($log(M_*/M_odot) >10.5$) galaxies that span a wide range in morphology, star formation activity and environment, and therefore is representative of the massive galaxy population at $zsim0.8$. We find that quiescent and star-forming galaxies occupy the parameter space of the $g$-band FP differently and thus have different distributions in the dynamical mass-to-light ratio ($M_{rm dyn}/L_g$), largely owing to differences in the stellar age and recent star formation history, and, to a lesser extent, the effects of dust attenuation. In contrast, we show that both star-forming and quiescent galaxies lie on the same mass FP at $zsim 0.8$, with a comparable level of intrinsic scatter about the plane. We examine the variation in $M_{rm dyn}/M_*$ through the thickness of the mass FP, finding no significant residual correlations with stellar population properties, Sersic index, or galaxy overdensity. Our results suggest that, at fixed size and velocity dispersion, the variations in $M_{rm dyn}/L_g$ of massive galaxies reflect an approximately equal contribution of variations in $M_*/L_g$, and variations in the dark matter fraction or initial mass function.
Gas-phase abundances and abundance gradients provide much information on past stellar generations, and are powerful probes of how galaxies evolve. Gas abundance gradients in galaxies have been studied as functions of galaxies mass and size individually, but have largely not been considered across the galaxy mass--size plane. Thus, we investigate gas-phase abundance gradients across this plane, using a sample of over 1000 galaxies selected from the MApping Nearby Galaxies at APO (MaNGA) spectroscopic survey. We find that gradients vary systematically such that above $10^{10}M_{odot}$, smaller galaxies display flatter gradients than larger galaxies at a given stellar mass. This mass--size behaviour cannot be explained by instrumental effects, nor is it simply a reflection of known trends between gradients and morphology. We explore multiple possibilities for a physical origin for this pattern, though further work is needed to establish a firm physical interpretation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا