Large-scale and High-speed Privacy Amplification for FPGA-based Quantum Key Distribution


Abstract in English

The FPGA-based Quantum key distribution (QKD) system is an important trend of QKD systems. It has several advantages, real time, low power consumption and high integration density. Privacy amplification is an essential part in a QKD system to ensure the security of QKD. Existing FPGA-based privacy amplification schemes have an disadvantage, that the throughput and the input size of these schemes (the best scheme 116Mbps@10^6) are much lower than these on other platforms (the best scheme 1Gbps@10^8). This paper designs a new PA scheme for FPGA-based QKD with multilinear modular hash-modular arithmetic hash (MMH-MH) PA and number theoretical transform (NTT) algorithm. The new PA scheme, named large-scale and high-speed (LSHS) PA scheme, designs a multiplication-reusable architecture and three key units to improve the performance. This scheme improves the input size and throughput of PA by above an order of magnitude. The throughput and input size of this scheme (1Gbps@10^8) is at a comparable level with these on other platforms.

Download