Quantum dynamics of a one degree-of-freedom Hamiltonian saddle-node bifurcation


Abstract in English

In this paper, we study the quantum dynamics of a one degree-of-freedom (DOF) Hamiltonian that is a normal form for a saddle node bifurcation of equilibrium points in phase space. The Hamiltonian has the form of the sum of kinetic energy and potential energy. The bifurcation parameter is in the potential energy function and its effect on the potential energy is to vary the depth of the potential well. The main focus is to evaluate the effect of the depth of the well on the quantum dynamics. This evaluation is carried out through the computation of energy eigenvalues and eigenvectors of the time-independent Schrodinger equations, expectation values and position uncertainties for position coordinate, and Wigner functions.

Download