No Arabic abstract
Kondo insulators have recently aroused great interest because they are promising materials that host a topological insulator state caused by the strong electron interactions. Moreover, recent observations of the quantum oscillations in the insulating state of Kondo insulators have come as a great surprise. Here, to investigate the surface electronic state of a prototype Kondo insulator YbB$_{12}$, we measured transport properties of single crystals and microstructures. In all samples, the temperature dependence of the electrical resistivity is insulating at high temperatures and the resistivity exhibits a plateau at low temperatures. The magnitude of the plateau value decreases with reducing sample thickness, which is quantitatively consistent with the surface electronic conduction in the bulk insulating YbB$_{12}$. Moreover, the magnetoresistance of the microstructures exhibits a weak-antilocalization effect at low field. These results are consistent with the presence of topologically protected surface state, suggesting that YbB$_{12}$ is a candidate material of the topological Kondo insulator. The high field resistivity measurements up to $mu_0H$ = 50 T of the microstructures provide supporting evidence that the quantum oscillations of the resistivity in YbB$_{12}$ occurs in the insulating bulk.
Bulk and surface state contributions to the electrical resistance of single-crystal samples of the topological Kondo insulator compound SmB6 are investigated as a function of crystal thickness and surface charge density, the latter tuned by ionic liquid gating with electrodes patterned in a Corbino disk geometry on a single surface. By separately tuning bulk and surface conduction channels, we show conclusive evidence for a model with an insulating bulk and metallic surface states, with a crossover temperature that depends solely on the relative contributions of each conduction channel. The surface conductance, on the order of 100 e^2/h and electron-like, exhibits a field-effect mobility of 133 cm^2/V/s and a large carrier density of ~2x10^{14}/cm^2, in good agreement with recent photoemission results. With the ability to gate-modulate surface conduction by more than 25%, this approach provides promise for both fundamental and applied studies of gate-tuned devices structured on bulk crystal samples.
In heavy fermions the relaxation dynamics of photoexcited carriers has been found to be governed by the low energy indirect gap, E$_{g}$, resulting from hybridization between localized moments and conduction band electrons. Here, carrier relaxation dynamics in a prototype Kondo insulator YbB${}_{12}$ is studied over large range of temperatures and over three orders of magnitude. We utilize the intrinsic non-linearity of dynamics to quantitatively determine microscopic parameters, such as electron-hole recombination rate. The extracted value reveals that hybridization is accompanied by a strong charge transfer from localized 4f-levels. The results imply the presence of a hybridization gap up to temperatures of the order of E$_{g}$/k$_{B}approx200$ K, which is extremely robust against electronic excitation. Finally, below 20 K the data reveal changes in the low energy electronic structure, attributed to short-range antiferromagnetic correlations between the localized levels.
A detailed low-energy electronic structure of a Kondo insulator YbB$_{12}$ was revealed by a synergetic combination of ultrahigh-resolution laser photoemission spectroscopy (PES) and time-resolved PES. The former confirmed a 25-meV pseudogap corresponding to the Kondo temperature of this material, and more importantly, it revealed that a 15-meV gap and a Kondo-peak feature developed below a crossover temperature $T^ast sim 110$ K. In harmony with this, the latter discovered a very long recombination time exceeding 100 ps below $sim$$T^ast$. This is a clear manifestation of photoexcited carriers due to the bottleneck in the recovery dynamics, which is interpreted as a developing hybridization gap of a hard gap.
We study the transport properties of the Kondo insulator SmB$_6$ with a specialized configuration designed to distinguish bulk-dominated conduction from surface-dominated conduction. We find that as the material is cooled below 4 K, it exhibits a crossover from bulk to surface conduction with a fully insulating bulk. We take the robustness and magnitude of the surface conductivity, as is manifest in the literature of SmB$_6$, to be strong evidence for the topological insulator metallic surface states recently predicted for this material.
SmB6 is a strongly correlated mixed-valence Kondo insulator with a newly discovered surface state, proposed to be of non-trivial topological origin. However, the surface state dominates electrical conduction only below T* ~ 4 K limiting its scientific investigation and device application. Here, we report the enhancement of T * in SmB6 under the application of tensile strain. With 0.7% tensile strain we report surface dominated conduction at up to a temperature of 240 K, persisting even after the strain has been removed. This can be explained in the framework of strain-tuned temporal and spatial fluctuations of f-electron configurations, which might be generally applied to other mixed-valence materials. We note that this amount of strain can be indued in epitaxial SmB6 films via substrate in potential device applications.