Do you want to publish a course? Click here

Topological surface conduction in Kondo insulator YbB$_{12}$

80   0   0.0 ( 0 )
 Added by Yuki Sato
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Kondo insulators have recently aroused great interest because they are promising materials that host a topological insulator state caused by the strong electron interactions. Moreover, recent observations of the quantum oscillations in the insulating state of Kondo insulators have come as a great surprise. Here, to investigate the surface electronic state of a prototype Kondo insulator YbB$_{12}$, we measured transport properties of single crystals and microstructures. In all samples, the temperature dependence of the electrical resistivity is insulating at high temperatures and the resistivity exhibits a plateau at low temperatures. The magnitude of the plateau value decreases with reducing sample thickness, which is quantitatively consistent with the surface electronic conduction in the bulk insulating YbB$_{12}$. Moreover, the magnetoresistance of the microstructures exhibits a weak-antilocalization effect at low field. These results are consistent with the presence of topologically protected surface state, suggesting that YbB$_{12}$ is a candidate material of the topological Kondo insulator. The high field resistivity measurements up to $mu_0H$ = 50 T of the microstructures provide supporting evidence that the quantum oscillations of the resistivity in YbB$_{12}$ occurs in the insulating bulk.



rate research

Read More

Bulk and surface state contributions to the electrical resistance of single-crystal samples of the topological Kondo insulator compound SmB6 are investigated as a function of crystal thickness and surface charge density, the latter tuned by ionic liquid gating with electrodes patterned in a Corbino disk geometry on a single surface. By separately tuning bulk and surface conduction channels, we show conclusive evidence for a model with an insulating bulk and metallic surface states, with a crossover temperature that depends solely on the relative contributions of each conduction channel. The surface conductance, on the order of 100 e^2/h and electron-like, exhibits a field-effect mobility of 133 cm^2/V/s and a large carrier density of ~2x10^{14}/cm^2, in good agreement with recent photoemission results. With the ability to gate-modulate surface conduction by more than 25%, this approach provides promise for both fundamental and applied studies of gate-tuned devices structured on bulk crystal samples.
In heavy fermions the relaxation dynamics of photoexcited carriers has been found to be governed by the low energy indirect gap, E$_{g}$, resulting from hybridization between localized moments and conduction band electrons. Here, carrier relaxation dynamics in a prototype Kondo insulator YbB${}_{12}$ is studied over large range of temperatures and over three orders of magnitude. We utilize the intrinsic non-linearity of dynamics to quantitatively determine microscopic parameters, such as electron-hole recombination rate. The extracted value reveals that hybridization is accompanied by a strong charge transfer from localized 4f-levels. The results imply the presence of a hybridization gap up to temperatures of the order of E$_{g}$/k$_{B}approx200$ K, which is extremely robust against electronic excitation. Finally, below 20 K the data reveal changes in the low energy electronic structure, attributed to short-range antiferromagnetic correlations between the localized levels.
A detailed low-energy electronic structure of a Kondo insulator YbB$_{12}$ was revealed by a synergetic combination of ultrahigh-resolution laser photoemission spectroscopy (PES) and time-resolved PES. The former confirmed a 25-meV pseudogap corresponding to the Kondo temperature of this material, and more importantly, it revealed that a 15-meV gap and a Kondo-peak feature developed below a crossover temperature $T^ast sim 110$ K. In harmony with this, the latter discovered a very long recombination time exceeding 100 ps below $sim$$T^ast$. This is a clear manifestation of photoexcited carriers due to the bottleneck in the recovery dynamics, which is interpreted as a developing hybridization gap of a hard gap.
We study the transport properties of the Kondo insulator SmB$_6$ with a specialized configuration designed to distinguish bulk-dominated conduction from surface-dominated conduction. We find that as the material is cooled below 4 K, it exhibits a crossover from bulk to surface conduction with a fully insulating bulk. We take the robustness and magnitude of the surface conductivity, as is manifest in the literature of SmB$_6$, to be strong evidence for the topological insulator metallic surface states recently predicted for this material.
SmB6 is a strongly correlated mixed-valence Kondo insulator with a newly discovered surface state, proposed to be of non-trivial topological origin. However, the surface state dominates electrical conduction only below T* ~ 4 K limiting its scientific investigation and device application. Here, we report the enhancement of T * in SmB6 under the application of tensile strain. With 0.7% tensile strain we report surface dominated conduction at up to a temperature of 240 K, persisting even after the strain has been removed. This can be explained in the framework of strain-tuned temporal and spatial fluctuations of f-electron configurations, which might be generally applied to other mixed-valence materials. We note that this amount of strain can be indued in epitaxial SmB6 films via substrate in potential device applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا