Finite basis problems for stalactic, taiga, sylvester and Baxter monoids


Abstract in English

Stalactic, taiga, sylvester and Baxter monoids arise from the combinatorics of tableaux by identifying words over a fixed ordered alphabet whenever they produce the same tableau via some insertion algorithm. In this paper, three sufficient conditions under which semigroups are finitely based are given. By applying these sufficient conditions, it is shown that all stalactic and taiga monoids of rank greater than or equal to $2$ are finitely based and satisfy the same identities, that all sylvester monoids of rank greater than or equal to $2$ are finitely based and satisfy the same identities and that all Baxter monoids of rank greater than or equal to $2$ are finitely based and satisfy the same identities.

Download