Do you want to publish a course? Click here

Three-dimensional Stacking of Canted Antiferromagnetism and Pseudospin Current in Undoped Sr$_2$IrO$_4$: Symmetry Analysis and Microscopic Model Realization

92   0   0.0 ( 0 )
 Added by Yun-Peng Huang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent optical second-harmonic generation experiments observed unexpected broken spatial symmetries in the undoped spin-orbit Mott insulator Sr$_2$IrO$_4$, leading to intensive debates on the nature of its ground state. We propose that it is a canted antiferromagnetism with a hidden order of circulating staggered pseudospin current. Symmetry analysis shows that a proper $c$-axis stacking of the canted antiferromagnetism and the pseudospin current lead to a magnetoelectric coexistence state that breaks the two-fold rotation, inversion, and time-reversal symmetries, consistent with experimental observations. We construct a three-dimensional Hubbard model with spin-orbit coupling for the five localized 5$d$ Wannier orbitals centered at Ir sites, and demonstrate the microscopic realization of the desired coexistence state in a wide range of band parameters via a combination of self-consistent Hartree-Fock and variational calculations.

rate research

Read More

We investigate the temporal evolution of electronic states in strontium iridate Sr$_2$IrO$_4$. The time resolved photoemission spectra of intrinsic, electron doped and the hole doped samples are monitored in identical experimental conditions. Our data on intrinsic and electron doped samples, show that primary doublon-holon pairs relax near to the chemical potential on a timescale shorter than $70$ fs. The subsequent cooling of low energy excitations takes place in two step: a rapid dynamics of $cong120$ fs is followed by a slower decay of $cong 1$ ps. The reported timescales endorse the analogies between Sr$_2$IrO$_4$ and copper oxides.
We present a theoretical investigation of the effects of correlations on the electronic structure of the Mott insulator Sr$_2$IrO$_4$ upon electron doping. A rapid collapse of the Mott gap upon doping is found, and the electronic structure displays a strong momentum-space differentiation at low doping level: The Fermi surface consists of pockets centered around $(pi/2,pi/2)$, while a pseudogap opens near $(pi,0)$. Its physical origin is shown to be related to short-range spin correlations. The pseudogap closes upon increasing doping, but a differentiated regime characterized by a modulation of the spectral intensity along the Fermi surface persists to higher doping levels. These results, obtained within the cellular dynamical mean-field theory framework, are discussed in comparison to recent photoemission experiments and an overall good agreement is found.
348 - D. Haskel , G. Fabbris , J. H. Kim 2019
The effect of compression on the magnetic ground state of Sr$_2$IrO$_4$ is studied with x-ray resonant techniques in the diamond anvil cell. The weak interlayer exchange coupling between square-planar 2D IrO$_2$ layers is readily modified upon compression, with a crossover between magnetic structures around 7 GPa mimicking the effect of an applied magnetic field at ambient pressure. Higher pressures drive an order-disorder magnetic phase transition with no magnetic order detected above 17-20 GPa. The persistence of strong exchange interactions between $mathrm{J_{eff}}=1/2$ magnetic moments within the insulating IrO$_2$ layers up to at least 35 GPa points to a highly frustrated magnetic state in compressed Sr$_2$IrO$_4$ opening the door for realization of novel quantum paramagnetic phases driven by extended $5d$ orbitals with entangled spin and orbital degrees of freedom.
We report the existence of Griffiths phase (GP) and its influence on critical phenomena in layered Sr$_2$IrO$_4$ ferromagnet (T$_C$ = 221.5 K). The power law behavior of inverse magentic susceptibility, 1/$chi$(T) with exponent $lambda = 0.18(2)$ confirm the GP in the regime T$_C$ $<$ T $leq$ T$_G$ = 279.0(5) K. Moreover, the detailed critical analysis via modified Arrott plot method exhibits unrealistic critical exponents $beta$ = 0.77(1), $gamma$ = 1.59(2) and $delta = 3.06(4)$, in corroboration with magneto-caloric study. The abnormal exponent values have been viewed in context of ferromagnetic-Griffiths phase transition. The GP has been further analyzed using Bray model, which yields a reliable value of $beta$ = 0.19(2), belonging to the two-dimensional (2D) XYh$_4$ universality class with strong anisotropy present in Sr$_2$IrO$_4$. The present study proposes Bray model as a possible tool to investigate the critical behavior for Griffiths ferromagnets in place of conventional Arrott plot analysis. The possible origins of GP and its correlation with insulating nature of Sr$_2$IrO$_4$ have been discussed.
The anisotropic magnetic properties of Sr$_2$IrO$_4$ are investigated, using longitudinal and torque magnetometry. The critical scaling across $T_c$ of the longitudinal magnetization is the one expected for the 2D XY universality class. Modeling the torque for a magnetic field in the basal-plane, and taking into account all in-plane and out-of-plane magnetic couplings, we derive the effective 4-fold anisotropy $K_4 approx$ 1 10$^5$ erg mole$^{-1}$. Although larger than for the cuprates, it is found too small to account for a significant departure from the isotropic 2D XY model. The in-plane torque also allows us to put an upper bound for the anisotropy of a field-induced shift of the antiferromagnetic ordering temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا