Do you want to publish a course? Click here

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets

158   0   0.0 ( 0 )
 Added by Hayeon Lee
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Despite the success of recent Neural Architecture Search (NAS) methods on various tasks which have shown to output networks that largely outperform human-designed networks, conventional NAS methods have mostly tackled the optimization of searching for the network architecture for a single task (dataset), which does not generalize well across multiple tasks (datasets). Moreover, since such task-specific methods search for a neural architecture from scratch for every given task, they incur a large computational cost, which is problematic when the time and monetary budget are limited. In this paper, we propose an efficient NAS framework that is trained once on a database consisting of datasets and pretrained networks and can rapidly search for a neural architecture for a novel dataset. The proposed MetaD2A (Meta Dataset-to-Architecture) model can stochastically generate graphs (architectures) from a given set (dataset) via a cross-modal latent space learned with amortized meta-learning. Moreover, we also propose a meta-performance predictor to estimate and select the best architecture without direct training on target datasets. The experimental results demonstrate that our model meta-learned on subsets of ImageNet-1K and architectures from NAS-Bench 201 search space successfully generalizes to multiple unseen datasets including CIFAR-10 and CIFAR-100, with an average search time of 33 GPU seconds. Even under MobileNetV3 search space, MetaD2A is 5.5K times faster than NSGANetV2, a transferable NAS method, with comparable performance. We believe that the MetaD2A proposes a new research direction for rapid NAS as well as ways to utilize the knowledge from rich databases of datasets and architectures accumulated over the past years. Code is available at https://github.com/HayeonLee/MetaD2A.



rate research

Read More

In this paper, we propose a neural architecture search framework based on a similarity measure between the baseline tasks and the incoming target task. We first define the notion of task similarity based on the log-determinant of the Fisher Information Matrices. Next, we compute the task similarity from each of the baseline tasks to the incoming target task. By utilizing the relation between a target and a set of learned baseline tasks, the search space of architectures for the incoming target task can be significantly reduced, making the discovery of the best candidates in the set of possible architectures tractable and efficient, in terms of GPU days. This method eliminates the requirement for training the networks from scratch for the incoming target task as well as introducing the bias in the initialization of the search space from the human domain. Experimental results with 8 classification tasks in MNIST and CIFAR-10 datasets illustrate the efficacy of our proposed approach and its competitiveness with other state-of-art methods in terms of the classification performance, the number of parameters, and the search time.
Architectures obtained by Neural Architecture Search (NAS) have achieved highly competitive performance in various computer vision tasks. However, the prohibitive computation demand of forward-backward propagation in deep neural networks and searching algorithms makes it difficult to apply NAS in practice. In this paper, we propose a Multinomial Distribution Learning for extremely effective NAS,which considers the search space as a joint multinomial distribution, i.e., the operation between two nodes is sampled from this distribution, and the optimal network structure is obtained by the operations with the most likely probability in this distribution. Therefore, NAS can be transformed to a multinomial distribution learning problem, i.e., the distribution is optimized to have a high expectation of the performance. Besides, a hypothesis that the performance ranking is consistent in every training epoch is proposed and demonstrated to further accelerate the learning process. Experiments on CIFAR10 and ImageNet demonstrate the effectiveness of our method. On CIFAR-10, the structure searched by our method achieves 2.55% test error, while being 6.0x (only 4 GPU hours on GTX1080Ti) faster compared with state-of-the-art NAS algorithms. On ImageNet, our model achieves 75.2% top1 accuracy under MobileNet settings (MobileNet V1/V2), while being 1.2x faster with measured GPU latency. Test code with pre-trained models are available at https://github.com/tanglang96/MDENAS
Learning through tests is a broadly used methodology in human learning and shows great effectiveness in improving learning outcome: a sequence of tests are made with increasing levels of difficulty; the learner takes these tests to identify his/her weak points in learning and continuously addresses these weak points to successfully pass these tests. We are interested in investigating whether this powerful learning technique can be borrowed from humans to improve the learning abilities of machines. We propose a novel learning approach called learning by passing tests (LPT). In our approach, a tester model creates increasingly more-difficult tests to evaluate a learner model. The learner tries to continuously improve its learning ability so that it can successfully pass however difficult tests created by the tester. We propose a multi-level optimization framework to formulate LPT, where the tester learns to create difficult and meaningful tests and the learner learns to pass these tests. We develop an efficient algorithm to solve the LPT problem. Our method is applied for neural architecture search and achieves significant improvement over state-of-the-art baselines on CIFAR-100, CIFAR-10, and ImageNet.
323 - Yao Shu , Wei Wang , Shaofeng Cai 2019
Neural architecture search (NAS) searches architectures automatically for given tasks, e.g., image classification and language modeling. Improving the search efficiency and effectiveness have attracted increasing attention in recent years. However, few efforts have been devoted to understanding the generated architectures. In this paper, we first reveal that existing NAS algorithms (e.g., DARTS, ENAS) tend to favor architectures with wide and shallow cell structures. These favorable architectures consistently achieve fast convergence and are consequently selected by NAS algorithms. Our empirical and theoretical study further confirms that their fast convergence derives from their smooth loss landscape and accurate gradient information. Nonetheless, these architectures may not necessarily lead to better generalization performance compared with other candidate architectures in the same search space, and therefore further improvement is possible by revising existing NAS algorithms.
The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be alleviated if we could partially predict a networks trained accuracy from its initial state. In this work, we examine the overlap of activations between datapoints in untrained networks and motivate how this can give a measure which is usefully indicative of a networks trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201, NATS-Bench, and Network Design Spaces. Our approach can be readily combined with more expensive search methods; we examine a simple adaptation of regularised evolutionary search. Code for reproducing our experiments is available at https://github.com/BayesWatch/nas-without-training.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا