Correlated gravitational wave and microlensing signals of macroscopic dark matter


Abstract in English

Fermion dark matter particles can aggregate to form extended dark matter structures via a first-order phase transition in which the particles get trapped in the false vacuum. We study Fermi balls created in a phase transition induced by a generic quartic thermal effective potential. We show that for Fermi balls of mass, $3times 10^{-12}M_odot lesssim M_{rm FB} lesssim 10^{-5}M_odot$, correlated observations of gravitational waves produced during the phase transition (at SKA/THEIA), and gravitational microlensing caused by Fermi balls (at Subaru-HSC), can be made.

Download